Long-time behavior for quasilinear parabolic equations involving weighted p-Laplacian operators

被引:27
作者
Anh, Cung The [1 ]
Ke, Tran Dinh [1 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
关键词
Quasilinear parabolic equation; m-semiflow; Global solution; Global attractor; Compact embedding; Weighted p-Laplacian; GLOBAL ATTRACTORS;
D O I
10.1016/j.na.2009.02.125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the first initial boundary value problem for a class of quasilinear degenerate parabolic equations involving weighted p-Laplacian operators. The long-time behavior of solutions to that problem is considered via the concept of global attractors for multi-valued semiflows. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4415 / 4422
页数:8
相关论文
共 15 条
[1]   Global existence and long-time behavior of solutions to a class of degenerate parabolic equations [J].
Anh, Cung The ;
Hung, Phan Quoc .
ANNALES POLONICI MATHEMATICI, 2008, 93 (03) :217-230
[2]  
BABIN AV, 1992, ATTRACTOR EVOLUTION
[3]   On a variational degenerate elliptic problem [J].
Caldiroli, P ;
Musina, R .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (02) :187-199
[4]  
Carvalho AN, 1999, B UNIONE MAT ITAL, V2B, P693
[5]  
Cholewa J., 2000, Global attractors in abstract parabolic problems
[6]   Global attractors of a nonautonomous reaction-diffusion equation [J].
Kapustyan, AV .
DIFFERENTIAL EQUATIONS, 2002, 38 (10) :1467-1471
[7]  
KAPUSTYAN AV, 2003, MATH ZH, V55, P446
[8]   On the dynamics of a degenerate parabolic equation: global bifurcation of stationary states and convergence [J].
Karachalios, NI ;
Zographopoulos, NB .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (03) :361-393
[9]   Convergence towards attractors for a degenerate Ginzburg-Landau equation [J].
Karachalios, NI ;
Zographopoulos, NB .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (01) :11-30
[10]  
Lions JL., 1969, Quelques mthodes de rsolution des problmes aux limites non linaires