Scaling detection in time series: Diffusion entropy analysis

被引:145
作者
Scafetta, N
Grigolini, P
机构
[1] Duke Univ, Pratt Sch EE Dept, Durham, NC 27708 USA
[2] Univ N Texas, Ctr Nonlinear Sci, Denton, TX 76203 USA
[3] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[4] INFM, I-56127 Pisa, Italy
[5] CNR, Ist Biofis, Area Ric Pisa, I-56010 San Cataldo, Ghezzano Pisa, Italy
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 03期
关键词
D O I
10.1103/PhysRevE.66.036130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The methods currently used to determine the scaling exponent of a complex dynamic process described by a time series are based on the numerical evaluation of variance. This means that all of them can be safely applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by the time series, called diffusion entropy analysis (DEA). We adopt artificial Gauss and Levy time series, as prototypes of ordinary and anomalous statistics, respectively, and we analyze them with the DEA and four ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of Levy statistics.
引用
收藏
页数:10
相关论文
共 27 条
[1]   DYNAMICAL MODEL FOR DNA-SEQUENCES [J].
ALLEGRINI, P ;
BARBI, M ;
GRIGOLINI, P ;
WEST, BJ .
PHYSICAL REVIEW E, 1995, 52 (05) :5281-5296
[2]   Fluctuation-dissipation process without a time scale [J].
Annunziato, M ;
Grigolini, P ;
Riccardi, J .
PHYSICAL REVIEW E, 2000, 61 (05) :4801-4808
[3]  
[Anonymous], 1983, New York
[4]  
FEDERS J, 1988, FRACTALS
[5]   ANOMALOUS DIFFUSION IN INTERMITTENT CHAOTIC SYSTEMS [J].
GEISEL, T ;
THOMAE, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (22) :1936-1939
[6]  
GEISEL T, 1985, PHYS REV LETT, V54, P616, DOI 10.1103/PhysRevLett.54.616
[7]  
Gnedenko B. V., 1954, ADDISON WESLEY MATH
[8]  
Goldenfeld N, 1985, LECT PHASE TRANSITIO
[9]   Asymmetric anomalous diffusion: An efficient way to detect memory in time series [J].
Grigolini, P ;
Palatella, L ;
Raffaelli, G .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2001, 9 (04) :439-449
[10]   Diffusion entropy and waiting time statistics of hard-x-ray solar flares [J].
Grigolini, Paolo ;
Leddon, Deborah ;
Scafetta, Nicola .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046203