A LINEAR ALGEBRAIC ANALYSIS OF DIFFUSION SYNTHETIC ACCELERATION FOR THE BOLTZMANN TRANSPORT EQUATION II: THE SIMPLE CORNER BALANCE METHOD

被引:1
作者
Bihari, B. L. [1 ]
Brown, P. N. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
关键词
Boltzmann transport; diffusion limit; diffusion synthetic acceleration; linear algebra; asymptotic analysis;
D O I
10.1137/070693977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply the development and linear algebraic analysis of the diffusion synthetic acceleration method presented in [S. F. Ashby, P. N. Brown, M. R. Dorr, and A. C. Hindmarsh, SIAM J. Numer. Anal., 32 (1995), pp. 128-178] to a different spatial discretization. Our model equation is the monoenergetic, steady-state, linear Boltzmann transport equation in slab geometry. The discretization consists of a discrete ordinates collocation in angle and the simple corner balance method in space. By expressing diffusion synthetic acceleration in this formalism, asymptotic results are obtained that prove the effectiveness of the associated preconditioner in various limiting cases, including the asymptotic diffusion limit. These results hold for problems with nonconstant coefficients and nonuniform spatial zoning posed on finite domains with an incident flux at the boundaries. Numerical results confirm the theoretical estimates.
引用
收藏
页码:1782 / 1826
页数:45
相关论文
共 10 条
[1]  
Adams M. L., 1997, Transport Theory and Statistical Physics, V26, P385, DOI 10.1080/00411459708017924
[2]  
[Anonymous], 1973, The Equations of Radiation Hydrodynamics
[3]  
[Anonymous], 1983, Matrix Computations.
[4]   A LINEAR ALGEBRAIC ANALYSIS OF DIFFUSION SYNTHETIC ACCELERATION FOR THE BOLTZMANN TRANSPORT-EQUATION [J].
ASHBY, SF ;
BROWN, PN ;
DORR, MR ;
HINDMARSH, AC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (01) :128-178
[5]  
FABER V, 1989, LECT NOTES PURE APPL, V115, P37
[6]  
Greenbaum Anne, 1997, ITERATIVE METHODS SO
[8]  
MANTEUFFLEL T, 1994, SIAM J SCI COMPUT, V16, P601
[9]  
WAREING T, 1993, P JOINT INT C MATH M, P500
[10]   Krylov iterative methods and the degraded effectiveness of diffusion synthetic acceleration for multidimensional SN calculations in problems with material discontinuities [J].
Warsa, JS ;
Wareing, TA ;
Morel, JE .
NUCLEAR SCIENCE AND ENGINEERING, 2004, 147 (03) :218-248