In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array

被引:361
作者
Zhang, Jintao [1 ]
Wang, Zhuo [1 ]
Verma, Naveen [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
关键词
Analog computation; classification; image detection; in-memory computation; machine learning;
D O I
10.1109/JSSC.2016.2642198
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a machine-learning classifier where computations are performed in a standard 6T SRAM array, which stores the machine-learning model. Peripheral circuits implement mixed-signal weak classifiers via columns of the SRAM, and a training algorithm enables a strong classifier through boosting and also overcomes circuit nonidealities, by combining multiple columns. A prototype 128 x 128 SRAM array, implemented in a 130-nm CMOS process, demonstrates ten-way classification of MNIST images (using image-pixel features downsampled from 28 x 28 = 784 to 9 x 9 = 81, which yields a baseline accuracy of 90%). In SRAM mode (bit-cell read/write), the prototype operates up to 300 MHz, and in classify mode, it operates at 50 MHz, generating a classification every cycle. With accuracy equivalent to a discrete SRAM/digital-MAC system, the system achieves ten-way classification at an energy of 630 pJ per decision, 113x lower than a discrete system with standard training algorithm and 13x lower than a discrete system with the proposed training algorithm.
引用
收藏
页码:915 / 924
页数:10
相关论文
共 20 条
  • [1] [Anonymous], 2015, GUR OPT REF MAN
  • [2] Chen YH, 2016, ISSCC DIG TECH PAP I, V59, P262, DOI 10.1109/ISSCC.2016.7418007
  • [3] Kerneltron: Support vector "machine" in silicon
    Genov, R
    Cauwenberghs, G
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (05): : 1426 - 1434
  • [4] Hanson S, 2009, SYMP VLSI CIRCUITS, P176
  • [5] Horowitz M, 2014, ISSCC DIG TECH PAP I, V57, P10, DOI 10.1109/ISSCC.2014.6757323
  • [6] A 28 nm Configurable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory
    Jeloka, Supreet
    Akesh, Naveen Bharathwaj
    Sylvester, Dennis
    Blaauw, David
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (04) : 1009 - 1021
  • [7] Kim Y, 2016, ISSCC DIG TECH PAP I, V59, P258, DOI 10.1109/ISSCC.2016.7418005
  • [8] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324
  • [9] Mingu Kang, 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P8326, DOI 10.1109/ICASSP.2014.6855225
  • [10] Osada K., 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177), P168, DOI 10.1109/ISSCC.2001.912589