Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization

被引:9
作者
Makela, Marko M. [1 ]
Karmitsa, Napsu [1 ]
Wilppu, Outi [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
来源
MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES | 2016年 / 40卷
关键词
Multiobjective optimization; Nonsmooth optimization; Bundle methods; MINIMIZATION;
D O I
10.1007/978-3-319-23564-6_12
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a proximal bundle method for finding weakly Pareto optimal solutions to constrained nonsmooth programming problems with multiple objectives. The method is a generalization of proximal bundle approach for single objective optimization. The multiple objective functions are treated individually without employing any scalarization. The method is globally convergent and capable of handling several nonconvex locally Lipschitz continuous objective functions subject to nonlinear (possibly nondifferentiable) constraints. Under some generalized convexity assumptions, we prove that the method finds globally weakly Pareto optimal solutions. Concluding, some numerical examples illustrate the properties and applicability of the method.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 50 条
[41]   DECENTRALIZED BUNDLE METHOD FOR NONSMOOTH CONSENSUS OPTIMIZATION [J].
Wang, Zifeng ;
Ling, Qing ;
Yin, Wotao .
2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, :568-572
[43]   A Proximal-Type Method for Nonsmooth and Nonconvex Constrained Minimization Problems [J].
Sempere, Gregorio M. ;
de Oliveira, Welington ;
Royset, Johannes O. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (03)
[44]   Special back tracking proximal bundle method for nonconvex maximum eigenvalue optimization [J].
Lv, Jian ;
Pang, Li-Ping ;
Wang, Jin-He .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 :635-651
[45]   An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) :600-616
[46]   Perturbed proximal primal–dual algorithm for nonconvex nonsmooth optimization [J].
Davood Hajinezhad ;
Mingyi Hong .
Mathematical Programming, 2019, 176 :207-245
[47]   Diagonal bundle method with convex and concave updates for large-scale nonconvex and nonsmooth optimization [J].
Karmitsa, N. ;
Gaudioso, M. ;
Joki, K. .
OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (02) :363-382
[48]   A proximal alternating direction method of multipliers with a proximal-perturbed Lagrangian function for nonconvex and nonsmooth structured optimization [J].
Li, Bohan ;
Liu, Pengjie ;
Shao, Hu ;
Wu, Ting ;
Xu, Jiawei .
OPTIMIZATION LETTERS, 2025,
[49]   Quasi-Newton type proximal gradient method for nonconvex nonsmooth composite optimization problems [J].
Wang, Tanxing ;
Jiang, Yaning ;
Cai, Xingju .
JOURNAL OF GLOBAL OPTIMIZATION, 2025, 92 (03) :693-711
[50]   A feasible proximal bundle algorithm with convexification for nonsmooth, nonconvex semi-infinite programming [J].
Li-Ping Pang ;
Qi Wu .
Numerical Algorithms, 2022, 90 :387-422