Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization

被引:9
作者
Makela, Marko M. [1 ]
Karmitsa, Napsu [1 ]
Wilppu, Outi [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
来源
MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES | 2016年 / 40卷
关键词
Multiobjective optimization; Nonsmooth optimization; Bundle methods; MINIMIZATION;
D O I
10.1007/978-3-319-23564-6_12
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a proximal bundle method for finding weakly Pareto optimal solutions to constrained nonsmooth programming problems with multiple objectives. The method is a generalization of proximal bundle approach for single objective optimization. The multiple objective functions are treated individually without employing any scalarization. The method is globally convergent and capable of handling several nonconvex locally Lipschitz continuous objective functions subject to nonlinear (possibly nondifferentiable) constraints. Under some generalized convexity assumptions, we prove that the method finds globally weakly Pareto optimal solutions. Concluding, some numerical examples illustrate the properties and applicability of the method.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 50 条
[31]   An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems [J].
Tang, Chunming ;
Lv, Jinman ;
Jian, Jinbao .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[32]   New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information [J].
N. Hoseini Monjezi ;
S. Nobakhtian .
Numerical Algorithms, 2023, 94 :765-787
[33]   Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization [J].
Kabgani, Alireza ;
Soleimani-damaneh, Majid .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 299 (01) :35-45
[34]   A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces [J].
Sonntag, Konstantin ;
Gebken, Bennet ;
Mueller, Georg ;
Peitz, Sebastian ;
Volkwein, Stefan .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (01) :455-487
[35]   Proximal point method for a special class of nonconvex multiobjective optimization functions [J].
Bento, G. C. ;
Ferreira, O. P. ;
Sousa Junior, V. L. .
OPTIMIZATION LETTERS, 2018, 12 (02) :311-320
[36]   A proximal bundle-based algorithm for nonsmooth constrained multiobjective optimization problems with inexact data [J].
Hoseini Monjezi, N. ;
Nobakhtian, S. .
NUMERICAL ALGORITHMS, 2022, 89 (02) :637-674
[37]   A proximal bundle-based algorithm for nonsmooth constrained multiobjective optimization problems with inexact data [J].
N. Hoseini Monjezi ;
S. Nobakhtian .
Numerical Algorithms, 2022, 89 :637-674
[38]   Subgradient Method for Nonconvex Nonsmooth Optimization [J].
A. M. Bagirov ;
L. Jin ;
N. Karmitsa ;
A. Al Nuaimat ;
N. Sultanova .
Journal of Optimization Theory and Applications, 2013, 157 :416-435
[39]   An improved proximal method with quasi-distance for nonconvex multiobjective optimization problem [J].
Amir, Fouzia ;
Farajzadeh, Ali ;
Alzabut, Jehad .
JOURNAL OF APPLIED ANALYSIS, 2022, 28 (02) :333-340
[40]   Proximal bundle methods for nonsmooth DC programming [J].
de Oliveira, Welington .
JOURNAL OF GLOBAL OPTIMIZATION, 2019, 75 (02) :523-563