Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization

被引:9
作者
Makela, Marko M. [1 ]
Karmitsa, Napsu [1 ]
Wilppu, Outi [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
来源
MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES | 2016年 / 40卷
关键词
Multiobjective optimization; Nonsmooth optimization; Bundle methods; MINIMIZATION;
D O I
10.1007/978-3-319-23564-6_12
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a proximal bundle method for finding weakly Pareto optimal solutions to constrained nonsmooth programming problems with multiple objectives. The method is a generalization of proximal bundle approach for single objective optimization. The multiple objective functions are treated individually without employing any scalarization. The method is globally convergent and capable of handling several nonconvex locally Lipschitz continuous objective functions subject to nonlinear (possibly nondifferentiable) constraints. Under some generalized convexity assumptions, we prove that the method finds globally weakly Pareto optimal solutions. Concluding, some numerical examples illustrate the properties and applicability of the method.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 50 条
[21]   A new infeasible proximal bundle algorithm for nonsmooth nonconvex constrained optimization [J].
Monjezi, Najmeh Hoseini ;
Nobakhtian, S. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 74 (02) :443-480
[22]   A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONCONVEX OPTIMIZATION [J].
Hare, Warren ;
Sagastizabal, Claudia .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) :2442-2473
[23]   New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information [J].
Monjezi, N. Hoseini ;
Nobakhtian, S. .
NUMERICAL ALGORITHMS, 2023, 94 (02) :765-787
[24]   A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONSMOOTH NONCONVEX FUNCTIONS WITH INEXACT INFORMATION [J].
Huang, M. I. N. G. ;
Niu, Hui-min ;
Lin, Si-da ;
Yin, Zi-ran ;
Yuan, Jin-long .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (12) :8691-8708
[25]   A Triple Stabilized Bundle Method for Constrained Nonconvex Nonsmooth Optimization [J].
Dembele, Andre ;
Ndiaye, Babacar M. ;
Ouorou, Adam ;
Degla, Guy .
ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 :75-87
[26]   Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints [J].
Outi Montonen ;
Kaisa Joki .
Journal of Global Optimization, 2018, 72 :403-429
[27]   A class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problems [J].
Pang, Li-Ping ;
Meng, Fan-Yun ;
Yang, Jian-Song .
JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (04) :891-915
[28]   A class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problems [J].
Li-Ping Pang ;
Fan-Yun Meng ;
Jian-Song Yang .
Journal of Global Optimization, 2023, 85 :891-915
[29]   An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization [J].
Liu, Ruyu ;
Pan, Shaohua ;
Wu, Yuqia ;
Yang, Xiaoqi .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (02) :603-641
[30]   Subgradient Method for Nonconvex Nonsmooth Optimization [J].
Bagirov, A. M. ;
Jin, L. ;
Karmitsa, N. ;
Al Nuaimat, A. ;
Sultanova, N. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) :416-435