Hochschild and cyclic homology of ore extensions and some examples of quantum algebras

被引:8
作者
Guccione, JA [1 ]
Guccione, JJ [1 ]
机构
[1] UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT MATEMAT,RA-1428 BUENOS AIRES,DF,ARGENTINA
关键词
Hochschild homology; cyclic homology; Ore extensions; quantum groups;
D O I
10.1023/A:1007795614311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every Ore extension we construct a chain complex giving its Hochschild homology. As an application we compute the Hochschild and cyclic homology of an arbitrary multiparametric affine space and the Hochschild homology of the algebra of differential operators over this space, in the generic case.
引用
收藏
页码:259 / 276
页数:18
相关论文
共 16 条
[1]  
[Anonymous], P INT C MATH BERKELE
[2]  
DRINFELD VG, 1985, DOKL AKAD NAUK SSSR, V32, P254
[3]  
Faddeev L D., 1990, LENINGRAD MATH J, V1, P193
[4]   HOCHSCHILD AND CYCLIC HOMOLOGY OF QUANTUM GROUPS [J].
FENG, P ;
TSYGAN, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 140 (03) :481-521
[5]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[6]   CYCLIC HOMOLOGY OF DIFFERENTIAL-OPERATORS, THE VIRASORO ALGEBRA AND A Q-ANALOG [J].
KASSEL, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (02) :343-356
[7]  
KASSEL C, 1994, QUANTUM GROUPS
[8]  
Loday J.-L., 1992, CYCLIC HOMOLOGY
[9]  
Manin Yu., 1988, QUANTUM GROUPS NONCO
[10]   Theory of non-commutative polynomials [J].
Ore, O .
ANNALS OF MATHEMATICS, 1933, 34 :480-508