PERMUTATION BINOMIALS OVER FINITE FIELDS

被引:38
作者
Masuda, Ariane M. [1 ]
Zieve, Michael E. [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Ctr Commun Res, Princeton, NJ 08540 USA
关键词
Permutation polynomial; finite field; Weil bound; POLYNOMIALS; NUMBER;
D O I
10.1090/S0002-9947-09-04578-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if x(m) + ax(n) permutes the prime field F(p), where m > n > 0 and a is an element of F(p)*, then gcd(m - n,p - 1) > root p - 1. Conversely, we prove that if q >= 4 and m > n > 0 are fixed and satisfy gcd(m - n, q - 1) > 2q(log log q) / log q, then there exist permutation binomials over F(q) of the form x(m) + ax(n) if and only if gcd(m, n, q - 1) = 1.
引用
收藏
页码:4169 / 4180
页数:12
相关论文
共 50 条
[41]   New methods for generating permutation polynomials over finite fields [J].
Cao, Xiwang ;
Hu, Lei .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (06) :493-503
[42]   On Constructing Two Classes of Permutation Polynomials over Finite Fields [J].
CHENG Kaimin .
WuhanUniversityJournalofNaturalSciences, 2019, 24 (06) :505-509
[43]   A class of permutation trinomials over finite fields of odd characteristic [J].
Tu, Ziran ;
Zeng, Xiangyong .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (04) :563-583
[44]   THE DIFFERENCE BETWEEN PERMUTATION POLYNOMIALS OVER FINITE-FIELDS [J].
COHEN, SD ;
MULLEN, GL ;
SHIUE, PJS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) :2011-2015
[45]   CONSTRUCTING PERMUTATION POLYNOMIALS OVER FINITE FIELDS [J].
Qin, Xiaoer ;
Hong, Shaofang .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (03) :420-430
[46]   A note on permutation polynomials over finite fields [J].
Ma, Jingxue ;
Ge, Gennian .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 :261-270
[47]   On a class of permutation trinomials over finite fields [J].
Temur, Burcu Gulmez ;
Ozkaya, Buket .
TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (04) :778-792
[48]   Some classes of permutation binomials and trinomials of index q-1 over Fqn [J].
Gupta, Rohit ;
Quoos, Luciane ;
Wang, Qiang .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, 16 (02) :387-402
[49]   ON PERMUTATION BINOMIALS [J].
Ayad, Mohamed ;
Belghaba, Kacem ;
Kihel, Omar .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (02) :389-399
[50]   On some permutation binomials and trinomials over F2n [J].
Bhattacharya, Srimanta ;
Sarkar, Sumanta .
DESIGNS CODES AND CRYPTOGRAPHY, 2017, 82 (1-2) :149-160