PERMUTATION BINOMIALS OVER FINITE FIELDS

被引:38
作者
Masuda, Ariane M. [1 ]
Zieve, Michael E. [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Ctr Commun Res, Princeton, NJ 08540 USA
关键词
Permutation polynomial; finite field; Weil bound; POLYNOMIALS; NUMBER;
D O I
10.1090/S0002-9947-09-04578-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if x(m) + ax(n) permutes the prime field F(p), where m > n > 0 and a is an element of F(p)*, then gcd(m - n,p - 1) > root p - 1. Conversely, we prove that if q >= 4 and m > n > 0 are fixed and satisfy gcd(m - n, q - 1) > 2q(log log q) / log q, then there exist permutation binomials over F(q) of the form x(m) + ax(n) if and only if gcd(m, n, q - 1) = 1.
引用
收藏
页码:4169 / 4180
页数:12
相关论文
共 50 条
[21]   On a conjecture on permutation rational functions over finite fields [J].
Bartoli, Daniele ;
Hou, Xiang-dong .
FINITE FIELDS AND THEIR APPLICATIONS, 2021, 76
[22]   A recent survey of permutation trinomials over finite fields [J].
Jarali, Varsha ;
Poojary, Prasanna ;
Bhatta, G. R. Vadiraja .
AIMS MATHEMATICS, 2023, 8 (12) :29182-29220
[23]   Two classes of permutation polynomials over finite fields [J].
Zha, Zhengbang ;
Hu, Lei .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) :781-790
[24]   SOME FAMILIES OF PERMUTATION POLYNOMIALS OVER FINITE FIELDS [J].
Zieve, Michael E. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) :851-857
[25]   A piecewise construction of permutation polynomials over finite fields [J].
Fernando, Neranga ;
Hou, Xiang-dong .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) :1184-1194
[26]   Proof of a conjecture on permutation polynomials over finite fields [J].
Hou, Xiang-dong .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :192-195
[27]   PERMUTATION TRINOMIALS OVER FINITE FIELDS WITH EVEN CHARACTERISTIC [J].
Ding, Cunsheng ;
Qu, Longjiang ;
Wang, Qiang ;
Yuan, Jin ;
Yuan, Pingzhi .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) :79-92
[28]   A new approach to permutation polynomials over finite fields [J].
Hou, Xiang-Dong .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (03) :492-521
[29]   On permutation polynomials over finite fields of characteristic 2 [J].
Gupta, Rohit ;
Sharma, R. K. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (07)
[30]   Two classes of permutation polynomials over finite fields [J].
Hou, Xiang-dong .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) :448-454