PERMUTATION BINOMIALS OVER FINITE FIELDS

被引:37
作者
Masuda, Ariane M. [1 ]
Zieve, Michael E. [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Ctr Commun Res, Princeton, NJ 08540 USA
关键词
Permutation polynomial; finite field; Weil bound; POLYNOMIALS; NUMBER;
D O I
10.1090/S0002-9947-09-04578-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if x(m) + ax(n) permutes the prime field F(p), where m > n > 0 and a is an element of F(p)*, then gcd(m - n,p - 1) > root p - 1. Conversely, we prove that if q >= 4 and m > n > 0 are fixed and satisfy gcd(m - n, q - 1) > 2q(log log q) / log q, then there exist permutation binomials over F(q) of the form x(m) + ax(n) if and only if gcd(m, n, q - 1) = 1.
引用
收藏
页码:4169 / 4180
页数:12
相关论文
共 50 条
  • [21] Several new permutation quadrinomials over finite fields of odd characteristic
    Gupta, Rohit
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (01) : 223 - 239
  • [22] SOME FAMILIES OF PERMUTATION POLYNOMIALS OVER FINITE FIELDS
    Zieve, Michael E.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) : 851 - 857
  • [23] A recent survey of permutation trinomials over finite fields
    Jarali, Varsha
    Poojary, Prasanna
    Bhatta, G. R. Vadiraja
    AIMS MATHEMATICS, 2023, 8 (12): : 29182 - 29220
  • [24] Two classes of permutation polynomials over finite fields
    Zha, Zhengbang
    Hu, Lei
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) : 781 - 790
  • [25] Two classes of permutation polynomials over finite fields
    Hou, Xiang-dong
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 448 - 454
  • [26] On permutation polynomials over finite fields of characteristic 2
    Gupta, Rohit
    Sharma, R. K.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (07)
  • [27] A new approach to permutation polynomials over finite fields
    Hou, Xiang-Dong
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (03) : 492 - 521
  • [28] Further results on permutation polynomials and complete permutation polynomials over finite fields
    Liu, Qian
    Xie, Jianrui
    Liu, Ximeng
    Zou, Jian
    AIMS MATHEMATICS, 2021, 6 (12): : 13503 - 13514
  • [29] Proof of a conjecture on permutation polynomials over finite fields
    Hou, Xiang-dong
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 : 192 - 195
  • [30] PERMUTATION TRINOMIALS OVER FINITE FIELDS WITH EVEN CHARACTERISTIC
    Ding, Cunsheng
    Qu, Longjiang
    Wang, Qiang
    Yuan, Jin
    Yuan, Pingzhi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 79 - 92