PERMUTATION BINOMIALS OVER FINITE FIELDS

被引:38
作者
Masuda, Ariane M. [1 ]
Zieve, Michael E. [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Ctr Commun Res, Princeton, NJ 08540 USA
关键词
Permutation polynomial; finite field; Weil bound; POLYNOMIALS; NUMBER;
D O I
10.1090/S0002-9947-09-04578-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if x(m) + ax(n) permutes the prime field F(p), where m > n > 0 and a is an element of F(p)*, then gcd(m - n,p - 1) > root p - 1. Conversely, we prove that if q >= 4 and m > n > 0 are fixed and satisfy gcd(m - n, q - 1) > 2q(log log q) / log q, then there exist permutation binomials over F(q) of the form x(m) + ax(n) if and only if gcd(m, n, q - 1) = 1.
引用
收藏
页码:4169 / 4180
页数:12
相关论文
共 50 条
[1]   A class of permutation binomials over finite fields [J].
Hou, Xiang-dong .
JOURNAL OF NUMBER THEORY, 2013, 133 (10) :3549-3558
[2]   Permutation binomials over finite fields [J].
Oliveira, Jose Alves ;
Brochero Martinez, F. E. .
DISCRETE MATHEMATICS, 2022, 345 (03)
[3]   A survey of permutation binomials and trinomials over finite fields [J].
Hou, Xiang-dong .
TOPICS IN FINITE FIELDS, 2015, 632 :177-+
[4]   Determination of a type of permutation binomials over finite fields [J].
Hou, Xiang-Dong ;
Lappano, Stephen D. .
JOURNAL OF NUMBER THEORY, 2015, 147 :14-23
[5]   New classes of permutation binomials and permutation trinomials over finite fields [J].
Li, Kangquan ;
Qu, Longjiang ;
Chen, Xi .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 :69-85
[6]   New results on permutation binomials of finite fields [J].
Hou, Xiang-dong ;
Lavorante, Vincenzo Pallozzi .
FINITE FIELDS AND THEIR APPLICATIONS, 2023, 88
[7]   On permutation and complete permutation binomials and trinomials from linearized polynomials over finite fields [J].
Singh, Manpreet ;
Gupta, Shalini ;
Sharma, P. L. .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03) :1073-1085
[8]   A certain generalized Lucas sequence and its application to the permutation binomials over finite fields [J].
Zhang, Zhilin ;
Li, Hongjian ;
Tian, Delu .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
[9]   Stable binomials over finite fields [J].
Fernandes, Arthur ;
Panario, Daniel ;
Reis, Lucas .
FINITE FIELDS AND THEIR APPLICATIONS, 2025, 101
[10]   A class of permutation trinomials over finite fields [J].
Hou, Xiang-dong .
ACTA ARITHMETICA, 2014, 162 (01) :51-64