PERMUTATION BINOMIALS OVER FINITE FIELDS

被引:38
作者
Masuda, Ariane M. [1 ]
Zieve, Michael E. [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Ctr Commun Res, Princeton, NJ 08540 USA
关键词
Permutation polynomial; finite field; Weil bound; POLYNOMIALS; NUMBER;
D O I
10.1090/S0002-9947-09-04578-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if x(m) + ax(n) permutes the prime field F(p), where m > n > 0 and a is an element of F(p)*, then gcd(m - n,p - 1) > root p - 1. Conversely, we prove that if q >= 4 and m > n > 0 are fixed and satisfy gcd(m - n, q - 1) > 2q(log log q) / log q, then there exist permutation binomials over F(q) of the form x(m) + ax(n) if and only if gcd(m, n, q - 1) = 1.
引用
收藏
页码:4169 / 4180
页数:12
相关论文
共 34 条
[21]  
SERRE JP, 1983, COMPT REND ACAD SC 1, V297, P397
[22]  
SERRE JP, 1985, RATIONAL POINT UNPUB
[23]  
Stichtenoth H., 1993, ALGEBRAIC FUNCTION F
[24]  
STOHR KO, 1986, P LOND MATH SOC, V52, P1
[25]  
Tucker T. J., 2000, PERMUTATION POLYNOMI
[26]  
Turnwald G., 1988, CONTRIBUTIONS GEN AL, V6, P281
[27]   ON THE NUMBER OF VALUES TAKEN BY A POLYNOMIAL OVER A FINITE-FIELD [J].
VOLOCH, JF .
ACTA ARITHMETICA, 1989, 52 (02) :197-201
[28]  
Wan D., 1987, ACTA MATH SINICA, V3, P1
[29]  
Wan D., 1994, ACTA MATH SINICA, V10, P30
[30]   PERMUTATION POLYNOMIALS OF THE FORM X(R)F(X((Q-1)/D)) AND THEIR GROUP-STRUCTURE [J].
WAN, DQ ;
LIDL, R .
MONATSHEFTE FUR MATHEMATIK, 1991, 112 (02) :149-163