PERMUTATION BINOMIALS OVER FINITE FIELDS

被引:37
|
作者
Masuda, Ariane M. [1 ]
Zieve, Michael E. [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Ctr Commun Res, Princeton, NJ 08540 USA
关键词
Permutation polynomial; finite field; Weil bound; POLYNOMIALS; NUMBER;
D O I
10.1090/S0002-9947-09-04578-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if x(m) + ax(n) permutes the prime field F(p), where m > n > 0 and a is an element of F(p)*, then gcd(m - n,p - 1) > root p - 1. Conversely, we prove that if q >= 4 and m > n > 0 are fixed and satisfy gcd(m - n, q - 1) > 2q(log log q) / log q, then there exist permutation binomials over F(q) of the form x(m) + ax(n) if and only if gcd(m, n, q - 1) = 1.
引用
收藏
页码:4169 / 4180
页数:12
相关论文
共 50 条
  • [1] ON PERMUTATION BINOMIALS OVER FINITE FIELDS
    Ayad, Mohamed
    Belghaba, Kacem
    Kihel, Omar
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) : 112 - 124
  • [2] Permutation binomials over finite fields
    Oliveira, Jose Alves
    Brochero Martinez, F. E.
    DISCRETE MATHEMATICS, 2022, 345 (03)
  • [3] A class of permutation binomials over finite fields
    Hou, Xiang-dong
    JOURNAL OF NUMBER THEORY, 2013, 133 (10) : 3549 - 3558
  • [4] A survey of permutation binomials and trinomials over finite fields
    Hou, Xiang-dong
    TOPICS IN FINITE FIELDS, 2015, 632 : 177 - +
  • [5] Determination of a type of permutation binomials over finite fields
    Hou, Xiang-Dong
    Lappano, Stephen D.
    JOURNAL OF NUMBER THEORY, 2015, 147 : 14 - 23
  • [6] New classes of permutation binomials and permutation trinomials over finite fields
    Li, Kangquan
    Qu, Longjiang
    Chen, Xi
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 : 69 - 85
  • [7] On permutation and complete permutation binomials and trinomials from linearized polynomials over finite fields
    Singh, Manpreet
    Gupta, Shalini
    Sharma, P. L.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03): : 1073 - 1085
  • [8] New results on permutation binomials of finite fields
    Hou, Xiang-dong
    Lavorante, Vincenzo Pallozzi
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 88
  • [9] A detailed description of the binomial theorem and an application to permutation binomials over finite fields
    Zhilin Zhang
    Lang Tang
    Ningjing Huang
    Journal of Applied Mathematics and Computing, 2022, 68 : 177 - 198
  • [10] A detailed description of the binomial theorem and an application to permutation binomials over finite fields
    Zhang, Zhilin
    Tang, Lang
    Huang, Ningjing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 177 - 198