PERMUTATION BINOMIALS OVER FINITE FIELDS

被引:38
作者
Masuda, Ariane M. [1 ]
Zieve, Michael E. [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Ctr Commun Res, Princeton, NJ 08540 USA
关键词
Permutation polynomial; finite field; Weil bound; POLYNOMIALS; NUMBER;
D O I
10.1090/S0002-9947-09-04578-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if x(m) + ax(n) permutes the prime field F(p), where m > n > 0 and a is an element of F(p)*, then gcd(m - n,p - 1) > root p - 1. Conversely, we prove that if q >= 4 and m > n > 0 are fixed and satisfy gcd(m - n, q - 1) > 2q(log log q) / log q, then there exist permutation binomials over F(q) of the form x(m) + ax(n) if and only if gcd(m, n, q - 1) = 1.
引用
收藏
页码:4169 / 4180
页数:12
相关论文
共 34 条
[1]  
[Anonymous], 1973, Analytic Number Theory
[2]  
Brioschi F., 1870, Math. Ann, V2, P467
[3]  
Brioschi Franc, 1882, CR HEBD ACAD SCI, V95, P665
[4]   SOME THEOREMS ON PERMUTATION POLYNOMIALS [J].
CARLITZ, L .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1962, 68 (02) :120-&
[5]  
Carlitz L., 1966, ACTA ARITH, V12, P77
[6]  
DICKSON L, 1896, ANN MATH, V11, P65
[7]  
ELBAGHDADI S, 1995, ACTA ARITH, V69, P39
[8]  
Hermite C., 1863, CR HEBD ACAD SCI, V57, P750
[9]  
Ihara Y., 1982, J. Faculty Sci. Univ. Tokyo, V28, P721
[10]  
KOROBOV NM, 1971, SOV MATH DOKL, V12, P241