Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences

被引:65
作者
Christie, Alec P. [1 ]
Abecasis, David [2 ]
Adjeroud, Mehdi [3 ,4 ]
Alonso, Juan C. [5 ]
Amano, Tatsuya [6 ]
Anton, Alvaro [7 ]
Baldigo, Barry P. [8 ]
Barrientos, Rafael [9 ]
Bicknell, Jake E. [10 ]
Buhl, Deborah A. [11 ]
Cebrian, Just [12 ]
Ceia, Ricardo S. [13 ,14 ]
Cibils-Martina, Luciana [15 ,16 ]
Clarke, Sarah [17 ]
Claudet, Joachim [18 ]
Craig, Michael D. [19 ,20 ]
Davoult, Dominique [21 ]
De Backer, Annelies [22 ]
Donovan, Mary K. [23 ,24 ]
Eddy, Tyler D. [25 ,26 ,27 ]
Franca, Filipe M. [28 ]
Gardner, Jonathan P. A. [27 ]
Harris, Bradley P. [29 ]
Huusko, Ari [30 ]
Jones, Ian L. [31 ]
Kelaher, Brendan P. [32 ,33 ]
Kotiaho, Janne S. [34 ,35 ]
Lopez-Baucells, Adria [36 ,37 ,38 ,39 ]
Major, Heather L. [40 ]
Maki-Petays, Aki [41 ,42 ]
Martin, Beatriz [43 ,44 ]
Martin, Carlos A. [9 ]
Martin, Philip A. [1 ,45 ]
Mateos-Molina, Daniel [46 ]
McConnaughey, Robert A. [47 ]
Meroni, Michele [48 ]
Meyer, Christoph F. J. [36 ,37 ,38 ,49 ]
Mills, Kade [50 ]
Montefalcone, Monica [51 ]
Noreika, Norbertas [52 ,53 ]
Palacin, Carlos [5 ]
Pande, Anjali [27 ,54 ,55 ]
Pitcher, C. Roland [56 ]
Ponce, Carlos [57 ]
Rinella, Matt [58 ]
Rocha, Ricardo [36 ,37 ,38 ,59 ]
Ruiz-Delgado, Maria C. [60 ]
Schmitter-Soto, Juan J. [61 ]
Shaffer, Jill A. [11 ]
Sharma, Shailesh [62 ]
机构
[1] Univ Cambridge, Dept Zool, Conservat Sci Grp, David Attenborough Bldg,Downing St, Cambridge CB3 3QZ, England
[2] Univ Algarve, Ctr Marine Sci CCMar, Campus Gambelas, P-8005139 Faro, Portugal
[3] Univ Perpignan, Inst Rech Dev IRD, ENTROPIE, UMR 9220, Via Domitia,52 Ave Paul Alduy, F-66860 Perpignan, France
[4] Univ Perpignan, Lab Excellence CORAIL, Via Domitia,52 Ave Paul Alduy, F-66860 Perpignan, France
[5] CSIC, Museo Nacl Ciencias Nat, Madrid, Spain
[6] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia
[7] Univ Basque Country UPV EHU, Educ Fac Bilbao, E-48940 Leioa, Basque Country, Spain
[8] US Geol Survey, New York Water Sci Ctr, 425 Jordan Rd, Troy, NY 12180 USA
[9] Univ Complutense Madrid, Fac Ciencias Biol, Dept Biodivers Ecol & Evoluc, C Jose Antonio Novais 12, E-28040 Madrid, Spain
[10] Univ Kent, Durrell Inst Conservat & Ecol DICE, Sch Anthropol & Conservat, Canterbury CT2 7NR, Kent, England
[11] US Geol Survey, Northern Prairie Wildlife Res Ctr, Jamestown, ND 58401 USA
[12] Mississippi State Univ, Northern Gulf Inst, 1021 Balch Blvd, Stennis Space Ctr, MS 39529 USA
[13] Univ Coimbra, Dept Life Sci, MARE Marine & Environm Sci Ctr, Coimbra, Portugal
[14] Univ Coimbra, Dept Life Sci, CFE Ctr Funct Ecol, Coimbra, Portugal
[15] Univ Nacl Rio Cuarto UNRC, Dept Ciencias Nat, Cordoba, Argentina
[16] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[17] Marine Inst, Galway, Ireland
[18] PSL Univ Paris, Natl Ctr Sci Res, CRIOBE, CNRS,EPHE,UPVD,USR 3278, 195 Rue Saint Jacques, F-75005 Paris, France
[19] Univ Western Australia, Sch Biol Sci, Nedlands, WA 6009, Australia
[20] Murdoch Univ, Sch Environm & Conservat Sci, Murdoch, WA 6150, Australia
[21] Sorbonne Univ, CNRS, Stn Biolog, UMR 7144, F-29680 Roscoff, France
[22] Flanders Res Inst Agr Fisheries & Food ILVO, Ankerstr 1, B-8400 Oostende, Belgium
[23] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA
[24] Univ Hawaii Manoa, Hawaii Inst Marine Biol, Honolulu, HI 96822 USA
[25] Univ South Carolina, Baruch Inst Marine & Coastal Sci, Columbia, SC 29208 USA
[26] Mem Univ Newfoundland, Ctr Fisheries Ecosyst Res, Fisheries & Marine Inst, St John, NF, Canada
[27] Victoria Univ Wellington, Sch Biol Sci, POB 600, Wellington 6140, New Zealand
[28] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[29] Alaska Pacific Univ, Fisheries Aquat Sci & Technol Lab, 4101 Univ Dr, Anchorage, AK 99508 USA
[30] Nat Resources Inst Finland, Manamansalontie 90, Paltamo 88300, Finland
[31] Mem Univ, Dept Biol, St John, NF A1B 2R3, Canada
[32] Southern Cross Univ, Natl Marine Sci Ctr, 2 Bay Dr, Coffs Harbour 2450, Australia
[33] Southern Cross Univ, Marine Ecol Res Ctr, 2 Bay Dr, Coffs Harbour 2450, Australia
[34] Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla, Finland
[35] Univ Jyvaskyla, Sch Resource Wisdom, Jyvaskyla, Finland
[36] Univ Lisbon, Ctr Ecol Evolut & Environm Changes cE3c, Fac Sci, P-1749016 Lisbon, Portugal
[37] Natl Inst Amazonian Res, Biol Dynam Forest Fragments Project, BR-69011970 Manaus, Amazonas, Brazil
[38] Smithsonian Trop Res Inst, BR-69011970 Manaus, Amazonas, Brazil
[39] Granollers Museum Nat Hist, Granollers, Spain
[40] Univ New Brunswick, Dept Biol Sci, POB 5050, St John, NB E2L 4L5, Canada
[41] Voimalohi Oy, Voimatie 23, Li 91100, Finland
[42] Univ Oulu, Nat Resources Inst Finland, Paavo Havaksen Tie 3, Oulu 90014, Finland
[43] Fdn Migres CIMA Ctra, Cadiz, Spain
[44] Intergovernmental Oceanog Commiss UNESCO, Marine Policy & Reg Coordinat Sect Paris 07, Paris, France
[45] St Catharines Coll, BioRISC, Cambridge CB2 1RL, England
[46] Univ Murcia, Dept Ecol & Hidrol, Campus Espinardo, Murcia 30100, Spain
[47] Natl Marine Fisheries Serv, RACE Div, Alaska Fisheries Sci Ctr, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115 USA
[48] Joint Res Ctr JRC, European Commiss, Ispra, VA, Italy
[49] Univ Salford, Sch Sci Engn & Environm, Salford M5 4WT, Lancs, England
[50] Victorian Natl Pk Assoc, Carlton, Vic, Australia
基金
澳大利亚研究理事会; 英国自然环境研究理事会; 加拿大自然科学与工程研究理事会;
关键词
DIFFERENCE-IN-DIFFERENCES; CAUSAL INFERENCE; METAANALYSIS; HEALTH; BIODIVERSITY; IMPACTS; ECOLOGY; MODELS; GUIDE;
D O I
10.1038/s41467-020-20142-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs. Randomised controlled experiments are the gold standard for scientific inference, but environmental and social scientists often rely on different study designs. Here the authors analyse the use of six common study designs in the fields of biodiversity conservation and social intervention, and quantify the biases in their estimates.
引用
收藏
页数:11
相关论文
共 80 条
  • [1] Can Nonexperimental Methods Provide Unbiased Estimates of a Breastfeeding Intervention? A Within-Study Comparison of Peer Counseling in Oregon
    Altindag, Onur
    Joyce, Theodore J.
    Reeder, Julie A.
    [J]. EVALUATION REVIEW, 2019, 43 (3-4) : 152 - 188
  • [2] Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1
  • [3] [Anonymous], 2019, ISI WEB OF KNOWLEDGE
  • [4] [Anonymous], 2015, BMJ-BRIT MED J, V349, pg7647, DOI DOI 10.1126/science.aac4716
  • [5] The future of hyperdiverse tropical ecosystems
    Barlow, Jos
    Franca, Filipe
    Gardner, Toby A.
    Hicks, Christina C.
    Lennox, Gareth D.
    Berenguer, Erika
    Castello, Leandro
    Economo, Evan P.
    Ferreira, Joice
    Guenard, Benoit
    Leal, Cecilia Gontijo
    Isaac, Victoria
    Lees, Alexander C.
    Parr, Catherine L.
    Wilson, Shaun K.
    Young, Paul J.
    Graham, Nicholas A. J.
    [J]. NATURE, 2018, 559 (7715) : 517 - 526
  • [6] Fitting Linear Mixed-Effects Models Using lme4
    Bates, Douglas
    Maechler, Martin
    Bolker, Benjamin M.
    Walker, Steven C.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01): : 1 - 48
  • [7] A comparison of observational studies and randomized, controlled trials.
    Benson, K
    Hartz, AJ
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2000, 342 (25) : 1878 - 1886
  • [8] Generalized linear mixed models: a practical guide for ecology and evolution
    Bolker, Benjamin M.
    Brooks, Mollie E.
    Clark, Connie J.
    Geange, Shane W.
    Poulsen, John R.
    Stevens, M. Henry H.
    White, Jada-Simone S.
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2009, 24 (03) : 127 - 135
  • [9] The Role of Expert Judgment in Statistical Inference and Evidence-Based Decision-Making
    Brownstein, Naomi C.
    Louis, Thomas A.
    O'Hagan, Anthony
    Pendergast, Jane
    [J]. AMERICAN STATISTICIAN, 2019, 73 : 56 - 68
  • [10] Quasi-experimental methods enable stronger inferences from observational data in ecology
    Butsic, Van
    Lewis, David J.
    Radeloff, Volker C.
    Baumann, Matthias
    Kuemmerle, Tobias
    [J]. BASIC AND APPLIED ECOLOGY, 2017, 19 : 1 - 10