Finite temperature quantum condensations in the space of states: general proof

被引:1
作者
Ostilli, Massimo [1 ]
Presilla, Carlo [2 ,3 ]
机构
[1] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
[2] Sapienza Univ Roma, Dipartimento Fis, Piazzale A Moro 2, I-00185 Rome, Italy
[3] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy
关键词
quantum phase transitions; finite temperature; condensation in the space of states; general proof; Grover model; MECHANICS;
D O I
10.1088/1751-8121/acad49
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formalize and prove the extension to finite temperature of a class of quantum phase transitions, acting as condensations in the space of states, recently introduced and discussed at zero temperature (Ostilli and Presilla 2021 J. Phys. A: Math. Theor. 54 055005). In details, we find that if, for a quantum system at canonical thermal equilibrium, one can find a partition of its Hilbert space H into two subspaces, H-cond and H-norm, such that, in the thermodynamic limit, dim H-cond/ H -> 0 and the free energies of the system restricted to these subspaces cross each other for some value of the Hamiltonian parameters, then, the system undergoes a first-order quantum phase transition driven by those parameters. The proof is based on an exact probabilistic representation of quantum dynamics at an imaginary time identified with the inverse temperature of the system. We also show that the critical surface has universal features at high and low temperatures.
引用
收藏
页数:18
相关论文
共 26 条
[1]   Thermal phase transitions for Dicke-type models in the ultrastrong-coupling limit [J].
Aparicio Alcalde, M. ;
Bucher, M. ;
Emary, C. ;
Brandes, T. .
PHYSICAL REVIEW E, 2012, 86 (01)
[2]   An exact representation of the fermion dynamics in terms of Poisson processes and its connection with Monte Carlo algorithms [J].
Beccaria, M ;
Presilla, C ;
De Angelis, GF ;
Jona-Lasinio, G .
EUROPHYSICS LETTERS, 1999, 48 (03) :243-249
[3]  
Bollobas B., 2001, Cambridge Studies in Advanced Mathematics, V73
[4]   Finite-Size Scaling at First-Order Quantum Transitions [J].
Campostrini, Massimo ;
Nespolo, Jacopo ;
Pelissetto, Andrea ;
Vicari, Ettore .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[5]  
Carr L., 2010, Understanding Quantum Phase Transitions, DOI DOI 10.1103/PhysRevB.78.224413
[6]   First-order quantum phase transitions [J].
Continentino, M. A. ;
Ferreira, A. S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :828-834
[7]   Analog analogue of a digital quantum computation [J].
Farhi, E ;
Gutmann, S .
PHYSICAL REVIEW A, 1998, 57 (04) :2403-2406
[8]   QUANTUM ANNEALING - A NEW METHOD FOR MINIMIZING MULTIDIMENSIONAL FUNCTIONS [J].
FINNILA, AB ;
GOMEZ, MA ;
SEBENIK, C ;
STENSON, C ;
DOLL, JD .
CHEMICAL PHYSICS LETTERS, 1994, 219 (5-6) :343-348
[9]  
Grover L.K., 1997, SIAM J. Comput., P212
[10]   From Schrodinger's equation to the quantum search algorithm [J].
Grover, LK .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (07) :769-777