A Wideband Differential Linear Low-Noise Transconductance Amplifier With Active-Combiner Feedback in Complementary MGTR Configurations

被引:31
作者
Guo, Benqing [1 ]
Gong, Jing [2 ]
Wang, Yao [3 ]
机构
[1] Chengdu Univ Informat Technol, Coll Commun Engn, Chengdu 610225, Peoples R China
[2] Sichuan Univ, West China Hosp, Chengdu 610041, Peoples R China
[3] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Wideband; low-noise transconductance amplifier (LNTA); linearity; noise; active-combiner feedback; multi-gated transistor (MGTR); complementary configurations; RECEIVER FRONT-END; EMPLOYING NOISE; CMOS LNA; LINEARIZATION; WIRELESS; P-1DB;
D O I
10.1109/TCSI.2020.3029298
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A wideband differential linear low-noise transconductance amplifier (LNTA) is proposed for SAW-less applications. An active combiner provides a dual-loop feedback for wideband matching with power efficiency. Operating as an auxiliary common source (CS) stage, complementary multi-gated transistor (MGTR) configurations are employed to compensate for the second- and third-order nonlinearity of the main CS stage, improving small-signal linearity. Large-signal linearity is also enhanced due to Class AB configurations. Additionally, the push-pull operation of the main CS stage and the auxiliary CS stage preserves good large-signal input matching performance. Implemented in a 0.18-mu m CMOS process, the measured LNTA chip provides a minimum noise figure (NF) of 2.5 dB, and a maximum transconductance value of 76.7 mS from 0.1 to 3.1 GHz. On average, an input 1-dB compression point (IP1 dB) of 2.3 dBm and an input third-order intercept point (IIP3) of 17.8 dBm are obtained, respectively. The blocker NF is 4.0 dB under a 0 dBm blocker injection while the S-11 < -10 dB is maintained even with the blocker input of -3.1 dBm. The LNTA core only draws 13.3 mA from a 1.8 V supply.
引用
收藏
页码:224 / 237
页数:14
相关论文
共 30 条
[1]  
[Anonymous], P IEEE INT SOL STAT
[2]   Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling [J].
Blaakmeer, Stephan C. ;
Klumperink, Eric A. M. ;
Leenaerts, Domine M. W. ;
Nauta, Bram .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (06) :1341-1350
[3]   Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS [J].
Borremans, Jonathan ;
Wambacq, Piet ;
Soens, Charlotte ;
Rolain, Yves ;
Kuijk, Maarten .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (11) :2422-2433
[4]   ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging [J].
Chang, Tienyu ;
Chen, Jinghong ;
Rigge, Lawrence A. ;
Lin, Jenshan .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (08) :1817-1826
[5]  
Chen J, 2016, IEEE INT SYMP CIRC S, P2122
[6]   A highly linear broadband CMOS LNA employing noise and distortion cancellation [J].
Chen, Wei-Hung ;
Liu, Gang ;
Zdravko, Boos ;
Niknejad, Ali M. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (05) :1164-1176
[7]  
Coccia A, 2017, 2017 13TH CONFERENCE ON PH.D. RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME), P45, DOI 10.1109/PRIME.2017.7974103
[8]   High-efficiency CMOS+22-dBm linear power amplifier [J].
Ding, YW ;
Harjani, R .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (09) :1895-1900
[9]   SAW-Less Analog Front-End Receivers for TDD and FDD [J].
Fabiano, Ivan ;
Sosio, Marco ;
Liscidini, Antonio ;
Castello, Rinaldo .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (12) :3067-3079
[10]   Wide-Band Inductorless Low-Noise Transconductance Amplifiers With High Large-Signal Linearity [J].
Geddada, Hemasundar Mohan ;
Fu, Chang-Tsung ;
Silva-Martinez, Jose ;
Taylor, Stewart S. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (07) :1495-1505