NIR associated to PLS and SVM for fast and non-destructive determination of C, N, P, and K contents in poultry litter

被引:40
作者
Borsatti Bedin, Flavia Chiamulera [1 ]
Faust, Mateus Vinicius [2 ]
Guarneri, Giovanni Alfredo [2 ]
Assmann, Tangriani Simioni [1 ]
Batista Lafay, Cintia Boeira [3 ]
Soares, Lisiane Fernandes [4 ]
Victoria de Oliveira, Paulo Armando [5 ]
dos Santos-Tonial, Larissa Macedo [3 ]
机构
[1] Univ Tecnolog Fed Parana UTFPR, Programa Posgrad Agron PPGAG, Campus Pato Branco, Curitiba, Parana, Brazil
[2] Univ Tecnolog Fed Parana UTFPR, Programa Posgrad Engn Elect PPGEE, Campus Pato Branco, Curitiba, Parana, Brazil
[3] Univ Tecnolog Fed Parana UTFPR, Dept Academ Quim DAQUI, Campus Pato Branco, Curitiba, Parana, Brazil
[4] Univ Tecnolog Fed Parana UTFPR, Dept Academ Agron DAGRO, Campus Pato Branco, Curitiba, Parana, Brazil
[5] Empresa Brasileira Pesquisa Agr EMBRAPA Suinos &, Concordia, SC, Brazil
关键词
Near-infrared; Organic manures; Support vector machines; INFRARED REFLECTANCE SPECTROSCOPY; LEAST-SQUARES REGRESSION; SOIL; QUALITY; NITROGEN; PREDICTION; REGION; ENERGY; CARBON; WATER;
D O I
10.1016/j.saa.2020.118834
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Using near-infrared (NIR) spectroscopy for poultry litter characterization can be a rapid, non-destructive, and low-cost alternative. This study aims to estimate the C, N, P, and K content in poultry litter samples using for first time NIR spectroscopy. For these purposes, the building models were carried out using Partial Least Squares (PLS) and Support Vector Machines (SVM) methods. A total of 160 litter samples were analyzed in poultry houses of different rearing systems, seeking the highest possible variability in their chemical composition. NIR spectroscopy, combined with PLS and SVM methods, is an alternative method for non-destructive C, N, P, and K determination in poultry samples. The regression models using SVM provide better accuracy for all elements, laying the basis for the nonlinear regression approach's application. The K determination on poultry litter using NIR was possible only by the SVM model (R-2 = 0.8620 and RPD = 2.7330). Conclusively, the predictive ability was improved using the SVM method. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 73 条
[11]   Theory and application of near infrared reflectance spectroscopy in determination of food quality [J].
Cen, Haiyan ;
He, Yong .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2007, 18 (02) :72-83
[12]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[13]   Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties [J].
Chang, CW ;
Laird, DA ;
Mausbach, MJ ;
Hurburgh, CR .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2001, 65 (02) :480-490
[14]   Quantitative determination of nutrient content in poultry manure by near infrared spectroscopy based on artificial neural networks [J].
Chen, L. J. ;
Xing, L. ;
Han, L. J. .
POULTRY SCIENCE, 2009, 88 (12) :2496-2503
[15]   Influence of soil sample preparation on the quantification of NPK content via spectroscopy [J].
Coutinho, Marcos A. N. ;
Alari, Fernando de O. ;
Ferreira, Marcia M. C. ;
do Amaral, Lucas R. .
GEODERMA, 2019, 338 :401-409
[16]   The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics [J].
Cozzolino, D ;
Morón, A .
JOURNAL OF AGRICULTURAL SCIENCE, 2003, 140 :65-71
[17]  
Da-Wen S., 2009, Infrared Spectroscopy for Food Quality Analysis and Control
[18]   Development of a non-destructive method for determining protein nitrogen in a yellow fever vaccine by near infrared spectroscopy and multivariate calibration [J].
Dabkiewicz, Vanessa Emidio ;
Pereira Abrantes, Shirley de Mello ;
Cassella, Ricardo Jorgensen .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 201 :170-177
[19]   Poultry litter as biomass energy: A review and future perspectives [J].
Dalolio, Felipe Santos ;
da Silva, Jadir Nogueira ;
Carneiro de Oliveira, Angelica Cassia ;
Ferreira Tinoco, Ilda de Fatima ;
Barbosa, Ruben Christiam ;
Resende, Michael de Oliveira ;
Teixeira Albino, Luiz Fernando ;
Coelho, Suani Teixeira .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 76 :941-949
[20]   Representative subset selection [J].
Daszykowski, M ;
Walczak, B ;
Massart, DL .
ANALYTICA CHIMICA ACTA, 2002, 468 (01) :91-103