Exact moments of the Sachdev-Ye-Kitaev model up to order 1/N2

被引:27
作者
Garcia-Garcia, Antonio M. [1 ]
Jia, Yiyang [2 ]
Verbaarschot, Jacobus J. M. [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai Ctr Complex Phys, Shanghai 200240, Peoples R China
[2] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 04期
关键词
1/N Expansion; Matrix Models; Random Systems; CONFORMAL FIELD-THEORY; ENERGY-LEVELS; RANDOM-MATRIX; STATISTICAL THEORY; COMPLEX SYSTEMS; DISTRIBUTIONS; HAMILTONIANS; LEVEL;
D O I
10.1007/JEHPO4(2018)146
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analytically evaluate the moments of the spectral density of the q-body Sachdev-Ye-Kitaev (SYK) model, and obtain order 1/N-2 corrections for all moments, where N is the total number of Majorana fermions. To order 1/N, moments are given by those of the weight function of the Q-Hermite polynomials. Representing Wick contractions by rooted chord diagrams, we show that the 1/N-2 correction for each chord diagram is proportional to the number of triangular loops of the corresponding intersection graph, with an extra grading factor when q is odd. Therefore the problem of finding 1/N-2 corrections is mapped to a triangle counting problem. Since the total number of triangles is a purely graph-theoretic property, we can compute them for the q = 1 and q = 2 SYK models, where the exact moments can be obtained analytically using other methods, and therefore we have solved the moment problem for any q to 1/N-2 accuracy. The moments are then used to obtain the spectral density of the SYK model to order 1/N-2. We also obtain an exact analytical result for all contraction diagrams contributing to the moments, which can be evaluated up to eighth order. This shows that the Q-Hermite approximation is accurate even for small values of N.
引用
收藏
页数:43
相关论文
共 37 条
[21]   Eigenstate thermalisation in the conformal Sachdev-Ye-Kitaev model: an analytic approach [J].
Nayak, Pranjal ;
Sonner, Julian ;
Vielma, Manuel .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
[22]   Eigenstate thermalisation in the conformal Sachdev-Ye-Kitaev model: an analytic approach [J].
Pranjal Nayak ;
Julian Sonner ;
Manuel Vielma .
Journal of High Energy Physics, 2019
[23]   Tunable quantum chaos in the Sachdev-Ye-Kitaev model coupled to a thermal bath [J].
Yiming Chen ;
Hui Zhai ;
Pengfei Zhang .
Journal of High Energy Physics, 2017
[24]   Bipartite Sachdev-Ye-Kitaev model: Conformal limit and level statistics [J].
Fremling, Mikael ;
Haque, Masudul ;
Fritz, Lars .
PHYSICAL REVIEW D, 2022, 105 (06)
[25]   Euclidean-to-Lorentzian wormhole transition and gravitational symmetry breaking in the Sachdev-Ye-Kitaev model [J].
Garcia-Garcia, Antonio M. ;
Godet, Victor ;
Yin, Can ;
Zheng, Jie Ping .
PHYSICAL REVIEW D, 2022, 106 (04)
[26]   Many-body localization in a finite-range Sachdev-Ye-Kitaev model and holography [J].
Garcia-Garcia, Antonio M. ;
Tezuka, Masaki .
PHYSICAL REVIEW B, 2019, 99 (05)
[27]   Quantum chaos transition in a two-site Sachdev-Ye-Kitaev model dual to an eternal traversable wormhole [J].
Garcia-Garcia, Antonio M. ;
Nosaka, Tomoki ;
Rosa, Dario ;
Verbaarschot, Jacobus J. M. .
PHYSICAL REVIEW D, 2019, 100 (02)
[28]   Symmetry Classification and Universality in Non-Hermitian Many-Body Quantum Chaos by the Sachdev-Ye-Kitaev Model [J].
Garcia-Garcia, Antonio M. ;
Sa, Lucas ;
Verbaarschot, Jacobus J. M. .
PHYSICAL REVIEW X, 2022, 12 (02)
[29]   Universality and its limits in non-Hermitian many-body quantum chaos using the Sachdev-Ye-Kitaev model [J].
Garcia-Garcia, Antonio M. ;
Sa, Lucas ;
Verbaarschot, Jacobus J. M. .
PHYSICAL REVIEW D, 2023, 107 (06)
[30]   Probing quantum chaos through singular-value correlations in the sparse non-Hermitian Sachdev-Ye-Kitaev model [J].
Nandy, Pratik ;
Pathak, Tanay ;
Tezuka, Masaki .
PHYSICAL REVIEW B, 2025, 111 (06)