On the exponential synchronization of stochastic jumping chaotic neural networks with mixed delays and sector-bounded non-linearities

被引:56
作者
Tang, Yang [1 ]
Fang, Jian-an [1 ]
Miao, Qingying [1 ,2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Shanghai Jiao Tong Univ, Continue Educ Sch, Shanghai 200030, Peoples R China
关键词
SJCNNs; Exponential synchronization; Stochastic system; LMI approach; Markovian jumping parameters; Sector non-linearities; ADAPTIVE LAG SYNCHRONIZATION; STABILITY ANALYSIS; H-INFINITY; DISCRETE; SYSTEMS;
D O I
10.1016/j.neucom.2008.08.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is concerned with the problem of exponential synchronization for stochastic jumping chaotic neural networks (SJCNNs) with mixed delays and sector non-linearities. Based on Lyapunov-Krasovskii functional and free-weighting matrix method, a delay-dependent feedback controller with sector nonlinearities is proposed to achieve the synchronization in mean square in terms of linear matrix inequalities (LMIs). The activation functions are assumed to be of more general descriptions. Finally, the corresponding simulation results show the effectiveness of the proposed criteria. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1694 / 1701
页数:8
相关论文
共 33 条
[1]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[2]   Global synchronization in arrays of delayed neural networks with constant and delayed coupling [J].
Cao, JD ;
Li, P ;
Wang, WW .
PHYSICS LETTERS A, 2006, 353 (04) :318-325
[3]  
Chen G., 1998, CHAOS ORDER METHODOL
[4]   Mean square exponential stability of uncertain stochastic delayed neural networks [J].
Chen, Wu-Hua ;
Lu, Xiaomei .
PHYSICS LETTERS A, 2008, 372 (07) :1061-1069
[5]   Spatiotemporal communication with synchronized optical chaos [J].
García-Ojalvo, J ;
Roy, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5204-5207
[6]   Absolute stability of time-delay systems with sector-bounded nonlinearity [J].
Han, QL .
AUTOMATICA, 2005, 41 (12) :2171-2176
[7]   Delay-dependent stability for uncertain stochastic neural networks with time-varying delay [J].
Huang, He ;
Feng, Gang .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 381 (1-2) :93-103
[8]  
KUSHUR H, 1976, STOCHASTIC STABILITY
[9]  
Lam J, 2005, J OPTIMIZ THEORY APP, V125, P137, DOI 10.1007/s10957-004-1714-6
[10]   A note on chaotic synchronization of time-delay secure communication systems [J].
Li, Demin ;
Wang, Zidong ;
Zhou, Jie ;
Fang, Jian'an ;
Ni, Jinjin .
CHAOS SOLITONS & FRACTALS, 2008, 38 (04) :1217-1224