Nitrate removal in riparian wetlands: Interactions between surface flow and soils

被引:30
作者
Rutherford, JC [1 ]
Nguyen, ML [1 ]
机构
[1] Natl Inst Water & Atmospher Res, Hamilton, New Zealand
关键词
D O I
10.2134/jeq2004.1133
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Riparian wetlands containing springs are thought to be ineffective at removing nitrate because contact times between the upwelled ground water and the underlying microbially active soils are short. Tracer experiments using lithium bromide (LiBr) and nitrate (NO3-N) injected at the surface were used to quantify residence times and NO3-N removal in a riparian swale characteristic of New Zealand hill-country pasture. An experimental enclosure was used with collecting trays at the downstream end to measure flow and concentration, shallow wells to measure subsurface concentrations, and an array of logging conductivity probes to monitor tracer continuously. The majority of added tracer reached the outlet more slowly than could be explained by surface flow, but more quickly than could be explained by Darcy seepage flow. There was evidence from the wells of tracer diffusing vertically to a depth of at least 5 cm into the surface soil layer, which was permanently saturated and highly porous. During dry weather 24 +/- 9% of added NO3-N was removed over a distance of 1.5 m largely by denitrification. The net uptake length coefficient for this wetland (K = 0.08 +/- 0.03 m(-1)) is slightly higher than the range (K = 0.01-0.07 m(-1)) measured in a small stream channel infested with macrophytes. Nitrate removal is expected to decrease with increasing flow. Seepage How is estimated to have removed only 7 +/- 4% of the added NO3-N and we hypothesize that vertical diffusion substantially increases NO3-N removal in this type of wetland. Riparian wetlands with springs and surface flows should not be dismissed as having low NO3-N removal potential without checking whether there is significant vertical mixing.
引用
收藏
页码:1133 / 1143
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 1998, STAND METH EX WAT WA, V20th
[2]  
BRUCE JD, 1978, NZ SOIL BUR B, V41
[3]   Nitrate movement and removal along a shallow groundwater flow path in a riparian wetland within a sheep-grazed pastoral catchment: results of a tracer study [J].
Burns, DA ;
Nguyen, L .
NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER RESEARCH, 2002, 36 (02) :371-385
[4]  
Burt TP, 1999, HYDROL PROCESS, V13, P1451, DOI 10.1002/(SICI)1099-1085(199907)13:10&lt
[5]  
1451::AID-HYP822&gt
[6]  
3.0.CO
[7]  
2-W
[8]   NITRATE LOSS AND TRANSFORMATION IN 2 VEGETATED HEADWATER STREAMS [J].
COOPER, AB ;
COOKE, JG .
NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER RESEARCH, 1984, 18 (04) :441-450
[9]  
COOPER AB, 1990, HYDROBIOLOGIA, V202, P13, DOI 10.1007/BF02208124
[10]   The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate [J].
Fennessy, MS ;
Cronk, JK .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 1997, 27 (04) :285-317