Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane

被引:51
作者
Li, CY [1 ]
Roy, K [1 ]
Dandridge, K [1 ]
Naren, AP [1 ]
机构
[1] Univ Tennessee, Ctr Hlth Sci, Dept Physiol, Memphis, TN 38163 USA
关键词
D O I
10.1074/jbc.M400688200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Based on electrophysiological measurements, it has been argued that the active form of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is a multimer. It has also been demonstrated that this multimerization is likely due to PDZ domain-interacting partners. Here we demonstrate that although CFTR in vitro can self-associate into multimers, which depends on PDZ-based interactions, this may not be the case in cell membrane. Using chemical cross-linking, we demonstrated that CFTR exists as a higher order complex in cell membrane. However, this higher order complex is predominantly CFTR dimers, and the PDZ-interacting partners (Na+/H+ exchanger regulatory factor-1 (NHERF1) and NHERF2) constitute similar to2% of this complex. Interestingly solubilizing membrane expressing CFTR in detergents such as Triton X-100, Nonidet P-40, deoxy-cholate, and SDS tended to destabilize the CFTR dimers and dissociate them into monomeric form. The dimerization of CFTR was tightly regulated by cAMP-dependent protein kinase-dependent phosphorylation and did not depend on the active form of the channel. In addition, the dimerization was not influenced by either the PDZ motif or its interacting partners ( NHERF1 and NHERF2). We also demonstrated that other signaling-related proteins such as Gbeta and syntaxin 1A can be in this higher order complex of CFTR as well. Our studies provide a deeper understanding of how the CFTR assembly takes place in native cell membrane.
引用
收藏
页码:24673 / 24684
页数:12
相关论文
共 37 条
[1]   The apical compartment: trafficking pathways, regulators and scaffolding proteins [J].
Altschuler, Y ;
Hodson, C ;
Milgram, SL .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (04) :423-429
[2]  
CHANG XB, 1993, J BIOL CHEM, V268, P11304
[3]   CFTR is a monomer: Biochemical and functional evidence [J].
Chen, JH ;
Chang, XB ;
Aleksandrov, AA ;
Riordan, JR .
JOURNAL OF MEMBRANE BIOLOGY, 2002, 188 (01) :55-71
[4]   Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes [J].
DeMarco, SJ ;
Chicka, MC ;
Strehler, EE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (12) :10506-10511
[5]   Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy [J].
Eskandari, S ;
Wright, EM ;
Kreman, M ;
Starace, DM ;
Zampighi, GA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (19) :11235-11240
[6]   Elucidation of protein-protein interactions using chemical cross-linking or label transfer techniques [J].
Fancy, DA .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2000, 4 (01) :28-33
[7]   Protein modules as organizers of membrane structure [J].
Fanning, AS ;
Anderson, JM .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (04) :432-439
[8]   A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins [J].
Hall, RA ;
Ostedgaard, LS ;
Premont, RT ;
Blitzer, JT ;
Rahman, N ;
Welsh, MJ ;
Lefkowitz, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8496-8501
[9]   Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells [J].
Hallows, KR ;
Kobinger, GP ;
Wilson, JM ;
Witters, LA ;
Foskett, JK .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2003, 284 (05) :C1297-C1308
[10]   Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase [J].
Hallows, KR ;
Raghuram, V ;
Kemp, BE ;
Witters, LA ;
Foskett, JK .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (12) :1711-1721