Scale relativity theory for one-dimensional non-differentiable manifolds

被引:17
作者
Cresson, J
机构
[1] Equipe de Mathématiques de Besançon, CNRS-UMR 6623, Université de Franche-Comté, 25030 Besançon Cedex
关键词
D O I
10.1016/S0960-0779(01)00221-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a rigorous foundation of the pure scale relativity theory for a one-dimensional space variable. We define several notions as "representation" of a continuous function, scale law and minimal resolution. We define precisely the meaning of a scale reference system and space reference system for non-differentiable one-dimensional manifolds. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:553 / 562
页数:10
相关论文
共 19 条
[1]   DIMENSION OF A QUANTUM-MECHANICAL PATH [J].
ABBOTT, LF ;
WISE, MB .
AMERICAN JOURNAL OF PHYSICS, 1981, 49 (01) :37-39
[2]  
[Anonymous], 1990, Geometrie non commutative
[3]   Scale divergence and differentiability [J].
Ben Adda, F ;
Cresson, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (04) :261-264
[4]  
BENADDA F, 2001, UNPUB CR ACAD SCI 1
[5]  
BENADDA F, 2001, IN PRESS J MATH ANAL
[6]  
BENADDA F, 2001, UNPUB LETT MATH PHYS
[7]  
BOUSQUET M, 2001, NONDIFFERNTIABLE MAN
[8]   String theory, scale relativity and the generalized uncertainty principle [J].
Castro, C .
FOUNDATIONS OF PHYSICS LETTERS, 1997, 10 (03) :273-293
[9]   Scale relativity in Cantorian E(∞) space-time [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2000, 11 (14) :2391-2395
[10]  
El Naschie MS, 1998, CHAOS SOLITON FRACT, V9, P2023, DOI 10.1016/S0960-0779(98)00186-6