Scale relativity theory for one-dimensional non-differentiable manifolds

被引:17
作者
Cresson, J
机构
[1] Equipe de Mathématiques de Besançon, CNRS-UMR 6623, Université de Franche-Comté, 25030 Besançon Cedex
关键词
D O I
10.1016/S0960-0779(01)00221-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a rigorous foundation of the pure scale relativity theory for a one-dimensional space variable. We define several notions as "representation" of a continuous function, scale law and minimal resolution. We define precisely the meaning of a scale reference system and space reference system for non-differentiable one-dimensional manifolds. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:553 / 562
页数:10
相关论文
共 19 条
  • [1] DIMENSION OF A QUANTUM-MECHANICAL PATH
    ABBOTT, LF
    WISE, MB
    [J]. AMERICAN JOURNAL OF PHYSICS, 1981, 49 (01) : 37 - 39
  • [2] [Anonymous], 1990, Geometrie non commutative
  • [3] Scale divergence and differentiability
    Ben Adda, F
    Cresson, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (04): : 261 - 264
  • [4] BENADDA F, 2001, UNPUB CR ACAD SCI 1
  • [5] BENADDA F, 2001, IN PRESS J MATH ANAL
  • [6] BENADDA F, 2001, UNPUB LETT MATH PHYS
  • [7] BOUSQUET M, 2001, NONDIFFERNTIABLE MAN
  • [8] String theory, scale relativity and the generalized uncertainty principle
    Castro, C
    [J]. FOUNDATIONS OF PHYSICS LETTERS, 1997, 10 (03) : 273 - 293
  • [9] Scale relativity in Cantorian E(∞) space-time
    El Naschie, MS
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (14) : 2391 - 2395
  • [10] El Naschie MS, 1998, CHAOS SOLITON FRACT, V9, P2023, DOI 10.1016/S0960-0779(98)00186-6