Remarks on mean convergence (boundedness) of partial sums of trigonometric series

被引:14
作者
Belov, AS [1 ]
机构
[1] Ivanovo State Univ, Ivanovo 153377, Russia
基金
俄罗斯基础研究基金会;
关键词
trigonometric Fourier series; L-convergence; L-boundedness; LC-sequence; LB-sequence; finitely lacunary sequence;
D O I
10.1023/A:1015860510199
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fairly general conditions on the coefficients (a(n))(n=1)(infinity) of even and odd trigonometric Fourier series tinder which L-convergence (boundedness) of partial sums of the series is equivalent to the relation Sigma(k=[n/2])(2n) \a(k)\/(\n-k\ +1) = o(1) (= O(1) respectively) are given.
引用
收藏
页码:739 / 748
页数:10
相关论文
共 8 条
[1]  
Bari N.K., 1961, Trigonometric Series
[2]  
Belov A.S., 1999, METRIC THEORY FUNCTI, P1
[3]  
Belov A.S., 1998, IZV TUL GOS U MMI, V4, P40
[4]  
FOMIN GA, 1979, MAT SBORNIK, V110, P251
[5]  
Fridli S, 1997, STUD MATH, V125, P161
[6]   L1-CONVERGENCE OF FOURIER-SERIES WITH QUASI-MONOTONE COEFFICIENTS [J].
GARRETT, JW ;
REES, CS ;
STANOJEVIC, CV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (03) :535-538
[7]  
Telyakovskii S. A., 1975, T MAT I STEKLOVA, V134, P310
[8]  
Telyakovskiy S. A., 1991, TRUD MAT I STEKL, V200, P322