Ultrathin carbon gauze for high-rate supercapacitor

被引:36
作者
Li, Zhenghui [1 ]
Li, Liuqing [1 ]
Li, Zhaopeng [1 ]
Liao, Haiyang [1 ]
Zhang, Haiyan [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
ultrathin carbon gauze; Friedel-Crafts crosslinking; hierarchically porous structure; high-rate performance; supercapacitor; METAL-ORGANIC FRAMEWORK; MESOPOROUS CARBONS; POROUS CARBON; MICROPOROUS CARBONS; ENERGY DENSITY; PERFORMANCE; CAPACITANCE; ACTIVATION; ELECTRODES; NANOSHEETS;
D O I
10.1016/j.electacta.2016.11.067
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Further increasing the output power is important to develop next-generation supercapacitor. In recent years, many papers focus on the design of pore structure to improve high-rate performance of supercapacitor, but few reports devote attention to reducing the nanoscale size of carbon framework to reach an optimal ion transfer. In the present paper, a novel ultrathin carbon gauze was fabricated by a simple boiling-induced volume expansion method. This carbon gauze shows foam-like morphology that is composed of 7 nm-thick carbon sheets. In addition, owing to the loose stack of carbon sheets, lots of meso-/macropores are created. When used as electrode in supercapacitor, the ultrathin carbon sheets can effectively minimize the electrolyte transfer distance and meso-/macropores can accelerate ion transfer speed, and then carbon gauze exhibits an impressive high-rate supercapacitive performance. While the scan rate is raised from 0.02 to 0.5 V s (1), the capacitance only reduces from 190 to 173 F g (1), implying a retention of 91%, and even under an extremely high scan rate of 2.0 V s (1), the cyclic voltammogram of carbon gauze still presents a symmetrically rectangular shape, revealing a considerable capacitance of 142 F g (1) (75% of the capacitance at 0.02 V s (1)). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:990 / 998
页数:9
相关论文
共 52 条
[51]   Graphene Coupled Schiff-base Porous Polymers: Towards Nitrogen-enriched Porous Carbon Nanosheets with Ultrahigh Electrochemical Capacity [J].
Zhuang, Xiaodong ;
Zhang, Fan ;
Wu, Dongqing ;
Feng, Xinliang .
ADVANCED MATERIALS, 2014, 26 (19) :3081-3086
[52]   Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains [J].
Zou, Chong ;
Wu, Dingcai ;
Li, Mingzhou ;
Zeng, Qingcong ;
Xu, Fei ;
Huang, Ziyi ;
Fu, Ruowen .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (04) :731-735