Towards logarithmic GLSM: the r-spin case

被引:1
|
作者
Chen, Qile [1 ,5 ]
Janda, Felix [2 ]
Ruan, Yongbin [3 ]
Sauvaget, Adrien [4 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[2] Univ Notre Dame, Dept Math, Notre Dame, IN USA
[3] Zhejiang Univ, Adv Study Math, Hangzhou, Peoples R China
[4] Univ Paris 06, Inst Math Jussieu, Paris, France
[5] Univ Cergy Pontoise, CNRS, Lab Math AGM, UMR 8088, Cergy, France
基金
美国国家科学基金会;
关键词
GROMOV-WITTEN INVARIANTS; TAUTOLOGICAL RELATIONS; VIRTUAL CYCLES; MODULI; GEOMETRY; CURVES; LOCALIZATION; MORPHISMS; FORMULA; SPACE;
D O I
10.2140/gt.2022.26.2855
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the logarithmic foundation for compactifying the moduli stacks of the gauged linear sigma model using stable log maps. We then illustrate our method via the key example of Witten's r-spin class to construct a proper moduli stack with a reduced perfect obstruction theory whose virtual cycle recovers the r-spin virtual cycle of Chang, Li and Li. Indeed, our construction of the reduced virtual cycle is built upon their work by appropriately extending and modifying the Kiem-Li cosection along certain logarithmic boundary. In a follow-up article, we push the technique to a general situation. One motivation of our construction is to fit the gauged linear sigma model in the broader setting of Gromov-Witten theory so that powerful tools such as virtual localization can be applied. A project along this line is currently in progress, leading to applications including computing loci of holomorphic differentials, and calculating Gromov-Witten invariants of threefolds.
引用
收藏
页码:2855 / 2939
页数:86
相关论文
共 50 条
  • [1] Twisted r-spin potential and Givental's quantization
    Chiodo, A.
    Zvonkine, D.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (05) : 1335 - 1369
  • [2] TAUTOLOGICAL RELATIONS AND THE r-SPIN WITTEN CONJECTURE
    Faber, Carel
    Shadrin, Sergey
    Zvonkine, Dimitri
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (04): : 621 - 658
  • [3] Open r-Spin Theory I: Foundations
    Buryak, Alexandr
    Clader, Emily
    Tessler, Ran J.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (14) : 10458 - 10532
  • [4] From r-spin intersection numbers to Hodge integrals
    Ding, Xiang-Mao
    Li, Yuping
    Meng, Lingxian
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (01): : 1 - 51
  • [5] Towards a description of the double ramification hierarchy for Witten's r-spin class
    Buryak, Alexandr
    Guere, Jeremy
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (05): : 837 - 865
  • [6] Formal pseudodifferential operators and Witten's r-spin numbers
    Liu, Kefeng
    Vakil, Ravi
    Xu, Hao
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 728 : 1 - 33
  • [7] TAUTOLOGICAL RELATIONS VIA r-SPIN STRUCTURES
    Pandharipande, R.
    Pixton, A.
    Zvonkine, D.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2019, 28 (03) : 439 - 496
  • [8] QUANTUM SINGULARITY THEORY FOR A(r-1) AND r-SPIN THEORY
    Fan, Huijun
    Jarvis, Tyler
    Ruan, Yongbin
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) : 2781 - 2802
  • [9] The Picard group of the moduli space of r-Spin Riemann surfaces
    Randal-Williams, Oscar
    ADVANCES IN MATHEMATICS, 2012, 231 (01) : 482 - 515
  • [10] Topological field theory on r-spin surfaces and the Arf-invariant
    Runkel, Ingo
    Szegedy, Lorant
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)