A review on automatic fetal and neonatal brain MRI segmentation

被引:137
作者
Makropoulos, Antonios [1 ]
Counsell, Serena J. [2 ]
Rueckert, Daniel [1 ]
机构
[1] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
[2] Kings Coll London, Div Imaging Sci & Biomed Engn, Ctr Developing Brain, London SE1 7EH, England
关键词
PERINATAL RISK-FACTORS; IMAGE SEGMENTATION; INTENSITY NONUNIFORMITY; VOLUME RECONSTRUCTION; TISSUE CLASSIFICATION; MANUAL SEGMENTATION; ATLAS; AGE; PREMATURITY; VALIDATION;
D O I
10.1016/j.neuroimage.2017.06.074
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In recent years, a variety of segmentation methods have been proposed for automatic delineation of the fetal and neonatal brain MRI. These methods aim to define regions of interest of different granularity: brain, tissue types or more localised structures. Different methodologies have been applied for this segmentation task and can be classified into unsupervised, parametric, classification, atlas fusion and deformable models. Brain atlases are commonly utilised as training data in the segmentation process. Challenges relating to the image acquisition, the rapid brain development as well as the limited availability of imaging data however hinder this segmentation task. In this paper, we review methods adopted for the perinatal brain and categorise them according to the target population, structures segmented and methodology. We outline different methods proposed in the literature and discuss their major contributions. Different approaches for the evaluation of the segmentation accuracy and benchmarks used for the segmentation quality are presented. We conclude this review with a discussion on shortcomings in the perinatal domain and possible future directions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:231 / 248
页数:18
相关论文
共 155 条
[1]   SEEDED REGION GROWING [J].
ADAMS, R ;
BISCHOF, L .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (06) :641-647
[2]  
Al-Attas R, 2007, IFMBE PROC, V15, P296
[3]   A new neonatal cortical and subcortical brain atlas: the Melbourne Children's Regional Infant Brain (M-CRIB) atlas [J].
Alexander, Bonnie ;
Murray, Andrea L. ;
Loh, Wai Yen ;
Marthews, Lillian G. ;
Adamson, Chris ;
Beare, Richard ;
Chen, Jian ;
Kelly, Claire E. ;
Rees, Sandra ;
Warfield, Simon K. ;
Anderson, Peter J. ;
Doyle, Lex W. ;
Spittle, Alicia J. ;
Cheong, Jeanie L. Y. ;
Seal, Marc L. ;
Thompson, Deanne K. .
NEUROIMAGE, 2017, 147 :841-851
[4]   Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging [J].
Anbeek, Petronella ;
Vincken, Koen L. ;
Groenendaal, Floris ;
Koeman, Annemieke ;
Van Osch, Matthias J. P. ;
Van der Grond, Jeroen .
PEDIATRIC RESEARCH, 2008, 63 (02) :158-163
[5]   Automatic Segmentation of Eight Tissue Classes in Neonatal Brain MRI [J].
Anbeek, Petronella ;
Isgum, Ivana ;
van Kooiji, Britt J. M. ;
Moi, Christian P. ;
Kersbergen, Karina J. ;
Groenendaal, Floris ;
Viergever, Max A. ;
de Vries, Linda S. ;
Benders, Manon J. N. L. .
PLOS ONE, 2013, 8 (12)
[6]  
[Anonymous], 2016, ARXIV160305959
[7]  
[Anonymous], ARXIV150202445
[8]  
[Anonymous], 2012, MICCAI NEOBRAINS12
[9]  
[Anonymous], 2012, MICCAI Grand Challenge on Neonatal Brain Segmentation
[10]   AUTOMATIC SEGMENTATION OF HEAD STRUCTURES ON FETAL MRI [J].
Anquez, Jeremie ;
Angelini, Elsa D. ;
Bloch, Isabelle .
2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, :109-112