MnO2/ordered mesoporous carbon nanocomposite for electrochemical supercapacitor

被引:29
|
作者
Kiani, M. A. [1 ,2 ]
Khani, Hadi [3 ]
Mohammadi, Nourali [3 ]
机构
[1] Chem & Chem Engn Res Ctr Iran, Tehran, Iran
[2] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran, Iran
[3] Acad Ctr Educ Culture & Res, Iranian Res & Dev Ctr Chem Ind, Tehran, Iran
基金
美国国家科学基金会;
关键词
High-voltage supercapacitor; Ordered mesoporous carbon; Manganese dioxide; Aqueous electrolyte; NEGATIVE-ELECTRODE MATERIAL; DOUBLE-LAYER CAPACITORS; HIGH-PERFORMANCE; ACTIVATED CARBON; AQUEOUS-ELECTROLYTE; COMPOSITE; MNO2; IMPEDANCE; TEMPLATE; STORAGE;
D O I
10.1007/s10008-013-2367-x
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The preparation of composite manganese dioxide (MnO2) nanoparticles in an ordered mesoporous carbon (CMK-3) matrix and its use for constructing a new wide-potential-window supercapacitor is reported. CMK-3 is prepared using mesoporous silica as a hard template and sucrose as carbon source. The different ratios of MnO2/CMK-3 composite is synthesized by impregnating CMK-3 with a Mn(NO3)(2)center dot 4H(2)O solution followed by annealing in nitrogen. Physical properties, morphology, and specific surface area were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen sorption measurements, respectively. The electrochemical properties of the composite were studied by cyclic voltammetry, galvanostatic charge/discharge measurements, and impedance spectroscopy in aqueous solution. A symmetric supercapacitor based on the 40 % MnO2/CMK-3 composite electrode shows a high operation voltage of 2.0 V and specific capacitances of 640 and 440 F g(-1) at discharge current densities of 1 and 10 A g(-1), respectively. Almost no significant decrease in specific capacity is observed after 10,000 cycles at different charge/discharge rates.
引用
收藏
页码:1117 / 1125
页数:9
相关论文
共 50 条
  • [11] Electrodeposition of α-MnO2/γ-MnO2 on Carbon Nanotube for Yarn Supercapacitor
    Jae-Hun Jeong
    Jong Woo Park
    Duck Weon Lee
    Ray H. Baughman
    Seon Jeong Kim
    Scientific Reports, 9
  • [12] Electrochemical Performance of MnO2 Composite with Activated Carbon for Supercapacitor Applications
    Saini, Sunaina
    Chand, Prakash
    Joshi, Aman
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2023, 30 (03) : 424 - 430
  • [13] Electrodeposition of α-MnO2/γ-MnO2 on Carbon Nanotube for Yarn Supercapacitor
    Jeong, Jae-Hun
    Park, Jong Woo
    Lee, Duck Weon
    Baughman, Ray H.
    Kim, Seon Jeong
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [14] Capacitive characteristics of amorphous MnO2/carbon black nanocomposite electrode for supercapacitor
    Zhang, Zhian
    Yang, Bangchao
    Deng, Meigen
    Hu, Yongda
    Kuei Suan Jen Hsueh Pao/ Journal of the Chinese Ceramic Society, 2005, 33 (02): : 164 - 169
  • [15] Electrochemical performance of electrodes in MnO2 supercapacitor
    Zhang Ying
    Liu Kai-Yu
    Zhang Wei
    Wang Hong-En
    ACTA CHIMICA SINICA, 2008, 66 (08) : 909 - 913
  • [16] Research on nanophase MnO2 for electrochemical supercapacitor
    Zhang, BH
    Zhang, N
    ACTA PHYSICO-CHIMICA SINICA, 2003, 19 (03) : 286 - 288
  • [17] Mesoporous amorphous MnO2 as electrode material for supercapacitor
    Xu, Mao-Wen
    Zhao, Dan-Dan
    Bao, Shu-Juan
    Li, Hu-Lin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2007, 11 (08) : 1101 - 1107
  • [18] Electrochemical Deposition of MnO2/RGO Nanocomposite Thin Film: Enhanced Supercapacitor Behavior
    Rahmanabadi, F.
    Sangpour, P.
    Sabouri-Dodaran, A. A.
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (09) : 5813 - 5820
  • [19] Electrochemical performance of r-graphene oxide based MnO2 nanocomposite for supercapacitor
    Kalaiarasi, S.
    Shyamala, S.
    Kavitha, M.
    Vedhi, C.
    Muthuchudarkodi, R. R.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2022, 13 (03): : 320 - 330
  • [20] Electrochemical Deposition of MnO2/RGO Nanocomposite Thin Film: Enhanced Supercapacitor Behavior
    F. Rahmanabadi
    P. Sangpour
    A. A. Sabouri-Dodaran
    Journal of Electronic Materials, 2019, 48 : 5813 - 5820