THE ORLICZ BRUNN-MINKOWSKI INEQUALITY FOR DUAL HARMONIC QUERMASSINTEGRALS

被引:0
作者
Wu, Xiang [1 ]
Li, Shougui [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Sci, Wuhan 430065, Hubei, Peoples R China
关键词
Star body; dual harmonic quermassintegrals; Orlicz Brunn-Minkowski inequality; AFFINE; SETS;
D O I
10.1007/s10473-019-0403-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Within the framework of Orlicz Brunn-Minkowski theory recently introduced by Lutwak, Yang, and Zhang [20, 21], Gardner, Hug, and Weil [5, 6] et al, the dual harmonic quermassintegrals of star bodies are studied, and a new Orlicz Brunn-Minkowski type inequality is proved for these geometric quantities.
引用
收藏
页码:945 / 954
页数:10
相关论文
共 36 条
[1]  
[Anonymous], 2007, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 2004, INTEGRAL GEOMETRY GE
[3]  
[Anonymous], 1997, LEZIONI LINCEE
[4]  
Barthe F, 2006, BRUNN MINKOWSKI THEO
[5]   The dual Brunn-Minkowski theory for bounded borel sets: Dual affine quermassintegrals and inequalities [J].
Gardner, R. J. .
ADVANCES IN MATHEMATICS, 2007, 216 (01) :358-386
[6]  
Gardner R.J., 2006, ENCY MATH APPL
[7]   The dual Orlicz-Brunn-Minkowski theory [J].
Gardner, Richard J. ;
Hug, Daniel ;
Weil, Wolfgang ;
Ye, Deping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (02) :810-829
[8]  
Gardner RJ, 2014, J DIFFER GEOM, V97, P427
[9]   Operations between sets in geometry [J].
Gardner, Richard J. ;
Hug, Daniel ;
Weil, Wolfgang .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (06) :2297-2352
[10]   The Brunn-Minkowski inequality [J].
Gardner, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :355-405