Amplifying the excited state chirality through self-assembly and subsequent enhancementviaplasmonic silver nanowires

被引:18
作者
Fu, Kuo [1 ,2 ]
Jin, Xue [2 ]
Zhou, Minghao [2 ]
Ma, Kai [2 ]
Duan, Pengfei [2 ]
Yu, Zhen-Qiang [1 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Low Dimens Mat, Genome Initiat, 1066 Xueyuan Ave, Shenzhen 518055, Peoples R China
[2] Natl Ctr Nanosci & Technol NCNST, CAS Key Lab Nanosyst & Hierarch Fabricat, CAS Ctr Excellence Nanosci, 11 ZhongGuanCun BeiYiTiao, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
CIRCULARLY-POLARIZED LUMINESCENCE; ENHANCED RAMAN-SCATTERING; SURFACE-PLASMON; DICHROISM; MOLECULES; AMPLIFICATION; NANOPARTICLES; NANOMATERIALS; ENERGY;
D O I
10.1039/d0nr04510a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of circularly polarized luminescent materials with a large luminescence dissymmetry factor (g(lum)) is continuing to be a big challenge. Here, we present a general approach for amplifying circular polarization of circularly polarized luminescence (CPL) through intergrating molecular self-assembly and surface plasmon resonance (SPR). Molecular self-assembly could amplify the CPL performance. Subsequently, the composites built of nanoassemblies and achiral silver nanowires (AgNWs) show intense CPL activity with an amplifiedg(lum)value. By applying an external magnetic field, the CPL activity of the nanoassemblies/AgNWs composites has been significantly enhanced, confirming a plasmon-enhanced circular polarization. Our design strategy based on SPR-enhanced circular polarization of the chiral emissive systems suggests that combining plasmonic nanomaterials with chiral organic materials could aid in the development of novel CPL active nanomaterials.
引用
收藏
页码:19760 / 19767
页数:8
相关论文
共 56 条
[1]  
Agarwalb A., 2011, P NATL ACAD SCI USA, V108, P8157
[2]  
Anker J. N., 2009, NANOSCIENCE TECHNOLO
[3]   Nanoparticle energy transfer on the cell surface [J].
Bene, L ;
Szentesi, G ;
Mátyus, L ;
Gáspár, R ;
Damjanovich, S .
JOURNAL OF MOLECULAR RECOGNITION, 2005, 18 (03) :236-253
[4]   Surface-plasmon-enhanced fluorescence spectroscopy for DNA detection using fluorescently labeled PNA as "DNA indicator" [J].
Chu, Li-Qiang ;
Foerch, Renate ;
Knoll, Wolfgang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (26) :4944-4947
[5]   Plasmon-Enhanced Spin-Orbit Interaction of Light in Graphene [J].
Ciattoni, Alessandro ;
Rizza, Carlo ;
Lee, Ho Wai Howard ;
Conti, Claudio ;
Marini, Andrea .
LASER & PHOTONICS REVIEWS, 2018, 12 (10)
[6]   ELECTROMAGNETIC THEORY OF ENHANCED RAMAN-SCATTERING BY MOLECULES ADSORBED ON ROUGH SURFACES [J].
GERSTEN, J ;
NITZAN, A .
JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (07) :3023-3037
[7]   Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects [J].
Govorov, Alexander O. ;
Gun'ko, Yurii K. ;
Slocik, Joseph M. ;
Gerard, Valerie A. ;
Fan, Zhiyuan ;
Naik, Rajesh R. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (42) :16806-16818
[8]   Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects [J].
Govorov, Alexander O. ;
Fan, Zhiyuan ;
Hernandez, Pedro ;
Slocik, Joseph M. ;
Naik, Rajesh R. .
NANO LETTERS, 2010, 10 (04) :1374-1382
[9]   Hierarchical Transfer and Communication of Chiroptical Information and Excited Energy in Nanohelix [J].
Han Buxing .
ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (12) :2325-2326
[10]  
Han J., 2019, ANGEW CHEM, V131, P7087