Detecting frog calling activity based on acoustic event detection and multi-label learning

被引:10
|
作者
Xie, Jie [1 ]
Michael, Towsey [1 ]
Zhang, Jinglan [1 ]
Roe, Paul [1 ]
机构
[1] Queensland Univ Technol, Brisbane, Qld, Australia
来源
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016) | 2016年 / 80卷
关键词
Frog abundance; frog species richness; multi-label learning; acoustic event detection; multiple regression analysis;
D O I
10.1016/j.procs.2016.05.352
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Frog population has been declining the past decade for habitat loss, invasive species, climate change, and so forth. Therefore, it is becoming ever more important to monitor the frog population. Recent advances in acoustic sensors make it possible to collect frog vocalizations over large spatio-temporal scale. Through the detection of frog calling activity with collected acoustic data, frog population can be predicted. In this paper we propose a novel method for detecting frog calling activity using acoustic event detection and multi-label learning. Here, frog calling activity consists of frog abundance and frog species richness, which denotes number of individual frog calls and number of frog species respectively. To be specific, each segmented recording is first transformed to a spectrogram. Then, acoustic event detection is used to calculate frog abundance. Meanwhile, those recordings without frog calls are filtered out. For frog species richness, three acoustic features, linear predictive coefficients, Mel-frequency Cepstral coefficients and wavelet-based features are calculated. Then, multi-label learning is used to predict frog species richness. Lastly, statistical analysis is used to reflect the relationship between frog calling activity (frog abundance and frog species richness) and weather variables. Experiment results show that our proposed method can accurately detect frog calling activity and reflect its relationship with weather variables.
引用
收藏
页码:627 / 638
页数:12
相关论文
共 50 条
  • [1] An Intrusion Detection Algorithm Based on Multi-label Learning
    Qian, Yanyan
    Li, Yongzhong
    2014 IEEE WORKSHOP ON ELECTRONICS, COMPUTER AND APPLICATIONS, 2014, : 602 - 605
  • [2] Multi-Label Learning for Activity Recognition
    Kumar, R.
    Qamar, I.
    Virdi, J. S.
    Krishnan, N. C.
    2015 INTERNATIONAL CONFERENCE ON INTELLIGENT ENVIRONMENTS IE 2015, 2015, : 152 - 155
  • [3] Multi-label classification of frog species via deep learning
    Xie, Jie
    Zeng, Rui
    Xu, Changliang
    Zhang, Jinglan
    Roe, Paul
    2017 IEEE 13TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2017, : 187 - 193
  • [4] Multi-Label Learning Based on Transfer Learning and Label Correlation
    Yang, Kehua
    She, Chaowei
    Zhang, Wei
    Yao, Jiqing
    Long, Shaosong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (01): : 155 - 169
  • [5] Emotion Detection in Online Social Network Based on Multi-label Learning
    Zhang, Xiao
    Li, Wenzhong
    Lu, Sanglu
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2017), PT I, 2017, 10177 : 659 - 674
  • [6] Multiple-Instance Multiple-Label Learning for the Classification of Frog Calls with Acoustic Event Detection
    Xie, Jie
    Towsey, Michael
    Zhang, Liang
    Yasumiba, Kiyomi
    Schwarzkopf, Lin
    Zhang, Jinglan
    Roe, Paul
    IMAGE AND SIGNAL PROCESSING (ICISP 2016), 2016, 9680 : 222 - 230
  • [7] Multi-Label Learning with Label Enhancement
    Shao, Ruifeng
    Xu, Ning
    Geng, Xin
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 437 - 446
  • [8] Multi-label Learning based on Label Entropy Guided Clustering
    Zhang, Ju-Jie
    Fang, Min
    Li, Xiao
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2014, : 756 - 760
  • [9] LTFML: Multi-label learning based on label typical features
    Zheng, Xiyuan
    Zhang, Huaxiang
    Fang, Xiaonan
    Meng, Lili
    Journal of Computational Information Systems, 2015, 11 (04): : 1497 - 1504
  • [10] Multi-label Ensemble Learning
    Shi, Chuan
    Kong, Xiangnan
    Yu, Philip S.
    Wang, Bai
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 223 - 239