Existence of 3-Dimensional Tori for 1D Complex Ginzburg-Landau Equation Via a Degenerate KAM Theorem

被引:4
|
作者
Mi, Lufang [1 ]
Lu, Shouxia [2 ]
Cong, Hongzi [2 ]
机构
[1] Binzhou Univ, Dept Math & Informat Sci, Binzhou 256600, Shandong, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
关键词
Complex Ginzburg-Landau equation; Invariant tori; Quasi-periodic solution; Degenerate infinite-dimensional KAM theory; Normal form technique; QUASI-PERIODIC SOLUTIONS; LOWER-DIMENSIONAL TORI; INVARIANT TORI; PERSISTENCE; SYSTEMS; CHAOS;
D O I
10.1007/s10884-013-9341-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider complex Ginzburg-Landau equation in one space dimension and rigorously show the existence of 3-dimensional tori. The proof is based on degenerate infinite-dimensional KAM theory and normal form technique.
引用
收藏
页码:21 / 56
页数:36
相关论文
共 25 条
  • [1] Existence of 3-Dimensional Tori for 1D Complex Ginzburg–Landau Equation Via a Degenerate KAM Theorem
    Lufang Mi
    Shouxia Lu
    Hongzi Cong
    Journal of Dynamics and Differential Equations, 2014, 26 : 21 - 56
  • [2] Existence of standing waves for the complex Ginzburg-Landau equation
    Cipolatti, Rolci
    Dickstein, Flavio
    Puel, Jean-Pierre
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 579 - 593
  • [3] Stationary modulated-amplitude waves in the 1D complex Ginzburg-Landau equation
    Lan, YH
    Garnier, N
    Cvitanovic, P
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 188 (3-4) : 193 - 212
  • [4] Amplitude wave in one-dimensional complex Ginzburg-Landau equation
    Ling-Ling, Xie
    Jia-Zhen, Gao
    Wei-Miao, Xie
    Ji-Hua, Gao
    CHINESE PHYSICS B, 2011, 20 (11)
  • [5] Amplitude wave in one-dimensional complex Ginzburg-Landau equation
    谢玲玲
    高加振
    谢伟苗
    高继华
    Chinese Physics B, 2011, 20 (11) : 134 - 139
  • [6] Spiral solutions of the two-dimensional complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 159 - 161
  • [7] Robust heteroclinic cycles in the one-dimensional complex Ginzburg-Landau equation
    Lloyd, DJB
    Champneys, AR
    Wilson, RE
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 204 (3-4) : 240 - 268
  • [8] Three-Dimensional Lattice Boltzmann Model for the Complex Ginzburg-Landau Equation
    Zhang, Jianying
    Yan, Guangwu
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (03) : 660 - 683
  • [9] STATIONARY AND TRAVELING PULSES OF THE 2D COMPLEX GINZBURG-LANDAU EQUATION
    BESTEHORN, M
    EUROPHYSICS LETTERS, 1991, 15 (05): : 473 - 478
  • [10] Secondary structures in a one-dimensional complex Ginzburg-Landau equation with homogeneous boundary conditions
    Nana, Laurent
    Ezersky, Alexander B.
    Mutabazi, Innocent
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2107): : 2251 - 2265