Distinctive composition of copper-ore-forming arc magmas

被引:468
作者
Loucks, R. R. [1 ]
机构
[1] Univ Western Australia, Sch Earth & Environm, Ctr Explorat Targeting, Crawley, WA 6009, Australia
关键词
porphyry copper; high sulfidation; metallogeny; arc magmatism; exploration; magma fertility; adakite; PHASE-EQUILIBRIA; MELTING RELATIONS; MAFIC INCLUSIONS; ISLAND; ANDESITE; CRYSTALLIZATION; PETROLOGY; WATER; H2O; CONSTRAINTS;
D O I
10.1080/08120099.2013.865676
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Magmatic fertility to generate porphyry- and high-sulfidation copper ore deposits generally develops, not at the scale of individual igneous complexes, but rather at the scale of petrochemical provinces spanning hundreds of kilometres of arc length, and containing many igneous complexes. The extent and duration of copper metallogenic provinces and epochs are apparently controlled by geodynamically imposed compressive stress that commonly lasts ca 5-20 Ma and fosters entrapment of mantle-derived basaltic magmas in chambers near the Moho where they cool very slowly and are likely to last long enough to experience intermittent replenishment during fractional crystallisation of layered ultramafic-mafic cumulate complexes on the chamber floor. Accumulation of dissolved H2O through multiple cycles of replenishment and crystallisation in high-pressure magma chambers can explain the distinguishing chemical features of copper-ore-forming calc-alkalic arc magmas. The distinguishing features include unusually high contents of Sr and V, and unusually low contents of Sc and Y. The distinction from ordinary andesitic, dacitic and rhyolitic arc magmas can be enhanced by using ratios of enriched elements to depleted elements. The ratios Sr/Y and V/Sc are shown here to be effective in discriminating least-altered samples of ore-forming intrusions from ordinary, metallogenically unproductive arc magmas. ????????-????????,????????????????,???????????????????????????????,??????????????????????????????????????????????????,?????5-20Ma,??????????????????????,???????????????????????- ???????????????????????????????????????????????,?????????????????????????????????????????,??????????????????????????????????????????????????/? ??/?????????????????????????????????????????????
引用
收藏
页码:5 / 16
页数:12
相关论文
共 72 条
[1]   THE PETROLOGY OF PLUTONIC BLOCKS AND INCLUSIONS FROM THE LESSER ANTILLES ISLAND ARC [J].
ARCULUS, RJ ;
WILLS, KJA .
JOURNAL OF PETROLOGY, 1980, 21 (04) :743-799
[2]   FRACTIONATION PATHS OF ATKA (ALEUTIANS) HIGH-ALUMINA BASALTS - CONSTRAINTS FROM PHASE-RELATIONS [J].
BAKER, DR ;
EGGLER, DH .
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 1983, 18 (1-4) :387-404
[3]   Plagioclase-free andesites from Ziticuaro (Michoacan), Mexico: petrology and experimental constraints [J].
Blatter, DL ;
Carmichael, ISE .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1998, 132 (02) :121-138
[4]   CRYSTAL-CHEMICAL CONTROLS ON THE PARTITIONING OF SR AND BA BETWEEN PLAGIOCLASE FELDSPAR, SILICATE MELTS, AND HYDROTHERMAL SOLUTIONS [J].
BLUNDY, JD ;
WOOD, BJ .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1991, 55 (01) :193-209
[5]  
BURNHAM C.W., 1979, The evolution of igneous rocks: fiftieth anniversary perspectives, P439
[6]  
Cahill T A., 1992, J Geophys Res, V97, P17
[7]  
CARROLL MR, 1990, AM MINERAL, V75, P345
[8]   MELTING RELATIONS IN PART OF SYSTEM CAO-MGO-AL-2O-3-SIO-2-NA-2O-H-2O UNDER 5KB PRESSURE [J].
CAWTHORN, RG .
JOURNAL OF PETROLOGY, 1976, 17 (01) :44-72
[9]   Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits [J].
Chambefort, Isabelle ;
Dilles, John H. ;
Kent, Adam J. R. .
GEOLOGY, 2008, 36 (09) :719-722
[10]   Why large porphyry Cu deposits like high Sr/Y magmas? [J].
Chiaradia, Massimo ;
Ulianov, Alexey ;
Kouzmanov, Kalin ;
Beate, Bernardo .
SCIENTIFIC REPORTS, 2012, 2