Chemotherapeutic agents sensitize osteogenic sarcoma cells, but not normal human bone cells, to Apo2L/TRIAL-induced apoptosis

被引:128
|
作者
Evdokiou, A
Bouralexis, S
Atkins, GJ
Chai, F
Hay, S
Clayer, M
Findlay, DM
机构
[1] Royal Adelaide Hosp, Dept Orthopaed, Adelaide, SA 5000, Australia
[2] Univ Adelaide, Adelaide, SA, Australia
[3] Queen Elizabeth Hosp, Dept Med, Adelaide, SA, Australia
[4] Queen Elizabeth Hosp, Dept Orthopaed, Adelaide, SA, Australia
关键词
Apo2L; TRAIL; osteosarcoma; bone; chemotherapy; apoptosis; FADD;
D O I
10.1002/ijc.10376
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Apo2L/TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines that induces death of cancer cells but not normal cells. Its potent apoptotic activity is mediated through its cell surface death domain-containing receptors, DR4 and DR5. Apo2L/TRAIL interacts also with 3 "decoy" receptors that do not induce apoptosis, DcR1, DcR2, which lack functional death domains, and osteoprotegerin (OPG). The aim of our study was to investigate the cytotoxic activity of Apo2L/TRAIL on established osteogenic sarcoma cell lines (BTK-143, HOS, MG-63, SJSA-1, G-292 and SAOS2) and in primary cultures of normal human bone (NHB) cells. When used alone, Apo2L/TRAIL at 100 ng/ml for 24 hr induced greater than 80% cell death in only I (BTK-143) of the 6 osteogenic sarcoma cell lines. In contrast, Apo2L/TRAIL-resistant cells were susceptible to Apo2L/TRAIL-mediated apoptosis in the presence of the anticancer drugs, Doxorubicin (DOX), Cisplatin (CDDP) and Etoposide (ETP) but not Methotrexate (MTX) or Cyclophosphamide (CPM). Importantly, neither Apo2L/TRAIL alone nor in combination with any of these drugs affected primary normal human bone cells under equivalent conditions. Apo2L/TRAIL-induced apoptosis, and its augmentation by chemotherapy in the resistant cell lines was mediated through caspase-8 and caspase-3 activation. Furthermore, Apo2L/TRAIL-induced apoptosis and its augmentation by chemotherapy was effectively inhibited by caspase-8 zIETD-fmk and caspase-3 zDEVD-fmk protease inhibitors and by the pan-caspase inhibitor zVAD-fmk. The pattern of basal Apo2L/TRAIL receptor mRNA expression, or expression of the intracellular caspase inhibitor FLICE-inhibitory protein, FLIP, could not be readily correlated with resistance or sensitivity to Apo2L/TRAIL-induced apoptosis. However, the augmentation of Apo2L/TRAIL effects by chemotherapy was associated with drug-induced up-regulation of death receptors DR4 and DR5 mRNA and protein. No obvious correlation was seen between the expression of OPG mRNA or protein and susceptibility of cells to Apo2L/TRAIL-induced apoptosis. Stable over-expression of a dominant negative form of the Fas-associated death domain protein (FADD) in the Apo2L/TRAIL-sensitive BTK-143 cells completely inhibited Apo2L/TRAIL-induced cell death. Our results indicate that chemotherapy and Apo2L/TRAIL act synergistically to kill cancer cells but not normal bone-derived osteoblast-like cells, which has implications for future therapy of osteosarcoma. (C) 2002 Wiley-Liss, Inc.
引用
收藏
页码:491 / 504
页数:14
相关论文
共 50 条
  • [31] Chemotherapeutic drug-induced apoptosis in human leukaemic cells is independent of the Fas (APO-1/CD95) receptor/ligand system
    McGahon, AJ
    Costa Pereira, AP
    Daly, L
    Cotter, TG
    BRITISH JOURNAL OF HAEMATOLOGY, 1998, 101 (03) : 539 - 547
  • [32] Paclitaxel induces apoptosis via caspase-3 activation in human osteogenic sarcoma cells (U-2 OS)
    Lu, KH
    Lue, KH
    Chou, MC
    Chung, JG
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2005, 23 (05) : 988 - 994
  • [33] A caspase-8-independent component in TRAIL/Apo-2L-induced cell death in human rhabdomyosarcoma cells
    I Petak
    R Vernes
    K S Szucs
    M Anozie
    K Izeradjene
    L Douglas
    D M Tillman
    D C Phillips
    J A Houghton
    Cell Death & Differentiation, 2003, 10 : 729 - 739
  • [34] A caspase-8-independent component in TRAIL/Apo2L-induced cell death in human rhabdomyosarcoma cells
    Petak, I
    Vernes, R
    Szucs, KS
    Anozie, M
    Izeradjene, K
    Douglas, L
    Tillman, DM
    Phillips, DC
    Houghton, JA
    CELL DEATH AND DIFFERENTIATION, 2003, 10 (06): : 729 - 739
  • [35] Valproic acid sensitizes k562 erythroleukemia cells to TRAIL/Apo2L-induced apoptosis
    Iacomino, Giuseppe
    Medici, Maria Cristina
    Russo, Gian Luigi
    ANTICANCER RESEARCH, 2008, 28 (2A) : 855 - 864
  • [36] Molecular determinants of epothilone B derivative (BMS 247550) and Apo-2L/TRAIL-induced apoptosis of human ovarian cancer cells
    Griffin, D
    Wittmann, S
    Guo, F
    Nimmanapalli, R
    Bali, P
    Wang, HG
    Bhalla, K
    GYNECOLOGIC ONCOLOGY, 2003, 89 (01) : 37 - 47
  • [37] Interleukin-6 sensitizes TNF-α and TRAIL/Apo2L dependent cell death through upregulation of death receptors in human cancer cells
    Sano, Emiko
    Kazaana, Akira
    Tadakuma, Hisashi
    Takei, Toshiaki
    Yoshimura, Sodai
    Hanashima, Yuya
    Ozawa, Yoshinari
    Yoshino, Atsuo
    Suzuki, Yutaka
    Ueda, Takuya
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2021, 1868 (07):
  • [38] The topoisomerase I inhibitor topotecan increases the sensitivity of prostate tumor cells to TRAIL/Apo-2L-induced apoptosis
    Thomas S. Griffith
    Troy J. Kemp
    Cancer Chemotherapy and Pharmacology, 2003, 52 : 175 - 184
  • [39] The topoisomerase I inhibitor topotecan increases the sensitivity of prostate tumor cells to TRAIL/Apo-2L-induced apoptosis
    Griffith, TS
    Kemp, TJ
    CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2003, 52 (03) : 175 - 184
  • [40] Colchicine-induced apoptosis in human normal liver L-02 cells by mitochondrial mediated pathways
    Chen, Xue-mei
    Liu, Jun
    Wang, Tao
    Shang, Jing
    TOXICOLOGY IN VITRO, 2012, 26 (05) : 649 - 655