Tuning the Thermodynamics of Association of Transmembrane Helices

被引:20
|
作者
Fiedor, Joanna [1 ,2 ]
Pilch, Mariusz [3 ]
Fiedor, Leszek [1 ]
机构
[1] Jagiellonian Univ, Fac Biochem Biophys & Biotechnol, PL-30387 Krakow, Poland
[2] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Dept Med Phys & Biophys, PL-30059 Krakow, Poland
[3] Higher Vocat Sch, PL-33100 Tarnow, Poland
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2009年 / 113卷 / 38期
关键词
LIGHT-HARVESTING COMPLEX; SINGLET-ENERGY-TRANSFER; RHODOSPIRILLUM-RUBRUM; PHOTOSYNTHETIC BACTERIA; RHODOBACTER-SPHAEROIDES; MEMBRANE-PROTEINS; BACTERIOCHLOROPHYLL-A; CIRCULAR-DICHROISM; CRYSTAL-STRUCTURE; STRUCTURAL ROLE;
D O I
10.1021/jp903789y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modular photosynthetic LH1 complex is applied as a model system to investigate the thermodynamics of a self-assembling membrane protein and the effects of cosolvents and cofactor (carotenoid) on the process. Native chromophores of LH1, bacteriochlorophyll, and carotenoid are excellent intrinsic spectroscopic reporter molecules. Their presence allows us to follow the association of transmembrane helices of LH1, Without the use of any external markers, by electronic absorption/emission and circular dichroism. Furthermore, the assembly correctness can be monitored by the intracomplex energy transfer. Both the cosolvent and carotenoid markedly affect Delta H degrees and Delta S degrees associated with the complex formation in detergent, but the driving force of the process remains almost constant due to an efficient enthalpy-entropy compensation in the system. In the absence of cosolvent and cofactor, the energy of interactions between transmembrane helices in LHI equals -580 kJ/mol. Delta H degrees drastically increases upon the addition of acetone (-1160 kJ/mol) and carotenoid (-1900 kJ/mol), whereas Delta S degrees lowers from +1.5 kJ/mol.K to -0.4. kJ/mol.K and to -2.6 kJ/mol.K, respectively. The stabilization of the ensemble by cofactor seems to be due to the stacking of aromatic residues of LH1 polypeptides with the carotenoid pi-electron system. The cosolvent, lowering the medium permittivity and thus enhancing helix-helix interactions, has an ordering effect oil the system (Delta S degrees < 0). This effect of cosolvent on Delta H degrees and Delta S degrees of association of transmembrane helices is relevant for crystallization of membrane proteins, as it explains in thermodynamic terms the action of amphiphiles used for crystallization of membrane proteins in the micellar phase.
引用
收藏
页码:12831 / 12838
页数:8
相关论文
共 50 条
  • [2] Packing of transmembrane helices in bacteriorhodopsin folding: Structure and thermodynamics
    Chen, C. -C.
    Wei, C. -C.
    Sun, Y. -C.
    Chen, C. -M.
    JOURNAL OF STRUCTURAL BIOLOGY, 2008, 162 (02) : 237 - 247
  • [3] Capturing the association of transmembrane helices in molecular simulations
    Domanski, Jan
    Stansfeld, Phillip
    Sansom, Mark
    Best, Robert
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [4] Calculating the free energy of association of transmembrane helices
    Zhang, Jinming
    Lazaridis, Themis
    BIOPHYSICAL JOURNAL, 2006, 91 (05) : 1710 - 1723
  • [5] Calculating the free energy of association of transmembrane helices
    Zhang, Jinming
    Lazaridis, Themis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [6] Evidence for hetero-association of transmembrane helices of integrins
    Gottschalk, KE
    Kessler, H
    FEBS LETTERS, 2004, 557 (1-3): : 253 - 258
  • [7] Polar residues drive association of polyleucine transmembrane helices
    Zhou, FX
    Merianos, HJ
    Brunger, AT
    Engelman, DM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) : 2250 - 2255
  • [8] Association of transmembrane helices: what determines assembling of a dimer?
    Efremov, RG
    Vereshaga, YA
    Volynsky, PE
    Nolde, DE
    Arseniev, AS
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2006, 20 (01) : 27 - 45
  • [9] Association of transmembrane helices: what determines assembling of a dimer?
    Roman G. Efremov
    Yana A. Vereshaga
    Pavel E. Volynsky
    Dmitry E. Nolde
    Alexander S. Arseniev
    Journal of Computer-Aided Molecular Design, 2006, 20 : 27 - 45
  • [10] Transmembrane α helices
    Mall, S
    East, JM
    Lee, AG
    PEPTIDE-LIPID INTERACTIONS, 2002, 52 : 339 - 370