Rhizomer: Interactive semantic knowledge graphs exploration

被引:3
|
作者
Garcia, Roberto [1 ]
Lopez-Gil, Juan-Miguel [2 ]
Gil, Rosa [1 ]
机构
[1] Univ Lleida, Jaume II 69, Lleida 25001, Spain
[2] Univ Basque Country, Paseo Manuel Lardizabal 1, Donostia San Sebastian 20018, Spain
关键词
Knowledge graph; Semantic data; Visualization; User interface; WEB RESEARCH;
D O I
10.1016/j.softx.2022.101235
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Rhizomer helps researchers and practitioners explore knowledge graphs available as Semantic Web data by performing the three data analysis tasks: overview, zoom and filter, and details-on-demand. This approach makes it easier for users to get an idea about the overall structure and intricacies of a dataset, when compared to existing approaches and even without prior knowledge. Rhizomer is helpful for data reusers, who want to know about the reuse opportunities of a given dataset, and for knowledge graph creators, who can check if the generated data follow their expectations. Rhizomer has been applied in many scenarios, from research and commercial projects to teaching.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Interactive 3D Exploration of RDF Graphs through Semantic Planes
    Viola, Fabio
    Roffia, Luca
    Antoniazzi, Francesco
    D'Elia, Alfredo
    Aguzzi, Cristiano
    Salmon Cinotti, Tullio
    FUTURE INTERNET, 2018, 10 (08):
  • [2] Interactive exploration of semantic clusters
    Lungu, Mircea
    Kuhn, Adrian
    Girba, Tudor
    Lanza, Michele
    3RD IEEE INTERNATIONAL WORKSHOP ON VISUALIZING SOFTWARE FOR UNDERSTANDING AND ANALYSIS, PROCEEEDINGS, 2005, : 95 - 100
  • [3] KGScope: Interactive Visual Exploration of Knowledge Graphs With Embedding-Based Guidance
    Yuan, Chao-Wen Hsuan
    Yu, Tzu-Wei
    Pan, Jia-Yu
    Lin, Wen-Chieh
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (12) : 7702 - 7716
  • [4] SPARQLVis: An Interactive Visualization Tool for Knowledge Graphs
    Yang, Chaozhou
    Wang, Xin
    Xu, Qiang
    Li, Weixi
    WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 471 - 474
  • [5] Interactive and iterative visual exploration of knowledge graphs based on shareable and reusable visual configurations
    Necasky, Martin
    JOURNAL OF WEB SEMANTICS, 2022, 73
  • [6] From Overview to Facets and Pivoting for Interactive Exploration of Semantic Web Data
    Brunetti, Josep Maria
    Garcia, Roberto
    Auer, Soeren
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2013, 9 (01) : 1 - 20
  • [7] Computing Semantic Similarity of Concepts in Knowledge Graphs
    Zhu, Ganggao
    Iglesias, Carlos A.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (01) : 72 - 85
  • [8] Semantic Maps for Knowledge Graphs: A Semantic-Based Summarization Approach
    Camarillo-Ramirez, Pablo
    Cervantes-Alvarez, Francisco
    Gutierrez-Preciado, Luis Fernando
    IEEE ACCESS, 2024, 12 : 6729 - 6744
  • [9] Selective interactive networks with knowledge graphs for image classification
    Tang, Wenqiang
    Yang, Zhouwang
    Song, Yanzhi
    KNOWLEDGE-BASED SYSTEMS, 2023, 278
  • [10] Design of Knowledge Graphs for Interactive Digital Narratives Authoring
    Abhilash, M.
    Nack, Frank
    INTERACTIVE STORYTELLING, ICIDS 2024, PT II, 2025, 15468 : 243 - 256