Finite element analysis and application for a nonlinear diffusion model in image denoising

被引:3
作者
Li, JC [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
finite element analysis; nonlinear diffusion; image processing;
D O I
10.1002/num.10017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability analysis and error estimates are presented for a nonlinear diffusion model, which appears in image denoising and solved by a fully discrete time Galerkin method with kth (k greater than or equal to 1) order conforming finite element spaces. Numerical experiments are provided with denoising several grayscale noisy images by our Galerkin method on bilinear finite elements. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:649 / 662
页数:14
相关论文
共 20 条
[1]   AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING [J].
ALVAREZ, L ;
GUICHARD, F ;
LIONS, PL ;
MOREL, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) :199-257
[2]  
[Anonymous], 1996, LEVEL SET METHODS
[3]  
Bansch E., 1997, Computing and Visualization in Science, V1, P53, DOI 10.1007/s007910050005
[4]  
Bertalmio M., 2000, 0043 CAM UCLA
[5]  
CASELLES V, 1998, IEEE T IMAGE P, V7
[6]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[7]  
CHAN TF, 2000, 0041 CAM UCLA
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .1. [J].
EVANS, LC ;
SPRUCK, J .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) :635-681
[10]  
Fairweather G., 1978, FINITE ELEMENT GALER