Thermal Conductivity and Compaction of GDL-MPL Interfacial Composite Material

被引:32
作者
Bock, R. [1 ,2 ]
Shum, A. D. [3 ]
Xiao, X. [4 ]
Karoliussen, H. [1 ]
Seland, F. [2 ]
Zenyuk, I., V [3 ]
Burheim, O. S. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[3] Tufts Univ, Dept Mech Engn, Medford, MA 02155 USA
[4] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
GAS-DIFFUSION-LAYER; POROUS TRANSPORT LAYERS; TEMPERATURE PROFILES; CONTACT RESISTANCE; COMPRESSION;
D O I
10.1149/2.0751807jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The microporous layer (MPL) and the gas diffusion layer (GDL) in a polymer electrolyte membrane (PEM) fuel cell assembly are often treated as separate layers in the literature. However, there exists a considerable third region where the two different materials merge in the coating process. This region has properties that differ from either of the materials that it consists of. Through-plane thermal conductivity and thickness variation under different compaction pressures were measured for such a composite region of two different commercial GDLs, Freudenberg H1410 and Toray Paper TGP-H-030, each treated with a custom-made MPL ink. Thermal conductivity at 15 bar compaction pressure for untreated Freudenberg H1410 GDL is 0.124 +/- 0.009 W K-1 m(-1) and for the custom-MPL-coated Freudenberg H1410 materials it was increased by the treatment to 0.141 +/- 0.004 W K-1 m(-1) and 0.145 +/- 0.004 W K-1 m(-1) for 9.9 wt% and 11.9 wt% ink, respectively. For Toray paper TGP-H-030 the thermal conductivity at 15 bar compaction pressure for GDL only is 0.449 +/- 0.009 W K-1 m(-1) and for the custom-MPL-coated Toray TGP-H-030 materials it was decreased by the treatment to 0.39 +/- 0.05 W K-1 m(-1) and 0.39 +/- 0.00 W K-1 m(-1) for 9.9 wt% and 11.9 wt% ink, respectively. (C) 2018 The Electrochemical Society.
引用
收藏
页码:F514 / F525
页数:12
相关论文
共 41 条
[1]   Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1-Experimental study [J].
Ahadi, Mohammad ;
Tam, Mickey ;
Saha, Madhu S. ;
Stumper, Jurgen ;
Bahrami, Majid .
JOURNAL OF POWER SOURCES, 2017, 354 :207-214
[2]   The through-plane thermal conductivity and the contact resistance of the components of the membrane electrode assembly and gas diffusion layer in proton exchange membrane fuel cells [J].
Alhazmi, N. ;
Ingham, D. B. ;
Ismail, M. S. ;
Hughes, K. ;
Ma, L. ;
Pourkashanian, M. .
JOURNAL OF POWER SOURCES, 2014, 270 :59-67
[3]   Thermal conductivity of microporous layers: Analytical modeling and experimental validation [J].
Andisheh-Tadbir, Mehdi ;
Kjeang, Erik ;
Bahrami, Majid .
JOURNAL OF POWER SOURCES, 2015, 296 :344-351
[4]   The Role of Compressive Stress on Gas Diffusion Media Morphology and Fuel Cell Performance [J].
Atkinson, Robert W., III ;
Garsany, Yannick ;
Gould, Benjamin D. ;
Swider-Lyons, Karen E. ;
Zenyuk, Iryna V. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (01) :191-201
[5]   Anisotropic heat conduction effects in proton-exchange membrane fuel cells [J].
Bapat, Chaitanya J. ;
Thyneill, Stefan T. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (09) :1109-1118
[6]   Experimental Study of Thermal Conductivity and Compression Measurements of the GDL-MPL interfacial composite region [J].
Bock, R. ;
Shum, A. ;
Khoza, T. ;
Seland, F. ;
Hussain, N. ;
Zenyuk, I. V. ;
Burheim, O. S. .
POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14) :189-199
[7]   Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell [J].
Burheim, O. ;
Vie, P. J. S. ;
Pharoah, J. G. ;
Kjelstrup, S. .
JOURNAL OF POWER SOURCES, 2010, 195 (01) :249-256
[8]   Ageing and thermal conductivity of Porous Transport Layers used for PEM Fuel Cells [J].
Burheim, O. S. ;
Ellila, G. ;
Fairweather, J. D. ;
Labouriau, A. ;
Kjelstrup, S. ;
Pharoah, J. G. .
JOURNAL OF POWER SOURCES, 2013, 221 :356-365
[9]  
Burheim O. S., 2017, CURRENT OPINION ELEC
[10]  
Burheim O.S., 2017, ENG ENERGY STORAGE