In order to evaluate the stability of aspartic acid, serine, leucine, and alanine under redox buffered hydrothermal conditions, a series of experiments have been performed. The pyrite-pyrrhotite-magnetite (PPM) mineral assemblage was used in the experimental systems in order to constrain the oxygen fugacity. Likewise, the K-feldspar-muscovite-quartz (KMQ) assemblage was added to control the hydrogen ion activity during the experiments. The purpose was to compare the relative stabilities in buffered and unbuffered experiments. The experiments were conducted at 200 degrees C and 50 bar in Teflon coated autoclaves. Glycine, which was not present initially, started to appear at an early stage in the experimental systems and is believed to be the result of decomposition of serine. Similarly, the increase in relative abundance of alanine is likely to be the result of decomposition of serine. Decomposition rates of leucine, alanine and aspartic acid were found to be lower in experiments containing the redox buffer assemblage pyrite-pyrrhotite-magnetite than in non-redox buffered experiments. The decomposition rate of serine was higher in buffered experiments, which indicates that a transformation pathway via dehydration of serine to dehydroalanine followed by reduction to alanine is promoted by reducing conditions.