DYNAMICS OF NON-AUTONOMOUS REACTION-DIFFUSION EQUATIONS IN LOCALLY UNIFORM SPACES

被引:0
作者
Yue, Gaocheng [1 ]
Zhong, Chengkui [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Reaction-diffusion equations; uniform attractors; locally uniform spaces; EVOLUTION-EQUATIONS; GLOBAL ATTRACTORS; WAVE-EQUATIONS; EXISTENCE; SEMIGROUPS; SYSTEMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first prove the well-posedness for the non autonomous reaction-diffusion equations on the entire space RN in the setting of locally uniform spaces with singular initial data. Then we study the asymptotic behavior of solutions of such equation and show the existence of (H-U(1,q)(R-N), H-phi(1,q)(R-N))-uniform(w.r.t. g is an element of H-LUq(R())N (g0)) attractor A(HLUq)(R-N)(g0) with locally uniform external forces being translation uniform bounded but not translation compact in L-b(p)(R; L-U(q)(R-N)). We also obtain the uniform attracting property in the stronger topology.
引用
收藏
页码:935 / 965
页数:31
相关论文
共 38 条
[1]   EXISTENCE AND FINITE DIMENSIONALITY OF THE GLOBAL ATTRACTOR FOR EVOLUTION-EQUATIONS ON UNBOUNDED-DOMAINS [J].
ABERGEL, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :85-108
[2]  
Amann H., 1993, FUNCTION SPACES DIFF, V133, P9
[3]  
ARRIETA J., 2009, ASYMPTOTIC BEH UNPUB
[4]   Linear parabolic equations in locally uniform spaces [J].
Arrieta, JM ;
Rodriguez-Bernal, A ;
Cholewa, JW ;
Dlotko, T .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (02) :253-293
[5]   Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains [J].
Arrieta, JM ;
Cholewa, JW ;
Dlotko, T ;
Rodríguez-Bernal, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :515-554
[6]  
Babin A.V., 1992, Attractors of Evolution Equations
[7]   ATTRACTORS OF PARTIAL-DIFFERENTIAL EVOLUTION-EQUATIONS IN AN UNBOUNDED DOMAIN [J].
BABIN, AV ;
VISHIK, MI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :221-243
[8]  
Carvalho A. N., 2004, C MATH, V100, P221, DOI DOI 10.4064/cm100-2-6
[9]  
Carvalho AN., 2013, Attractors for infinite-dimensional non-autonomous dynamical systems, DOI [10.1007/978-1-4614-4581-4, DOI 10.1007/978-1-4614-4581-4]
[10]  
CHEPYZHOV VV, 1995, CR ACAD SCI I-MATH, V321, P153