On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons

被引:266
作者
Talirz, Leopold [1 ,10 ]
Sode, Hajo [1 ]
Dumslaff, Tim [3 ]
Wang, Shiyong [1 ]
Sanchez-Valencia, Juan Ramon [1 ]
Liu, Jia [1 ]
Shinde, Prashant [1 ]
Pignedoli, Carlo A. [1 ,2 ]
Liang, Liangbo [4 ,5 ]
Meunier, Vincent [4 ]
Plumb, Nicholas C. [6 ]
Shi, Ming [6 ]
Feng, Xinliang [7 ,8 ]
Narita, Akimitsu [3 ]
Muellen, Klaus [3 ]
Fasel, Roman [1 ,9 ]
Ruffieux, Pascal [1 ]
机构
[1] Swiss Fed Labs Mat Sci & Technol Empa, Nanotech Surfaces Lab, CH-8600 Dubendorf, Switzerland
[2] Swiss Fed Labs Mat Sci & Technol Empa, NCCR MARVEL, CH-8600 Dubendorf, Switzerland
[3] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[5] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[6] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
[7] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
[8] Tech Univ Dresden, Dept Chem & Food Chem, D-01062 Dresden, Germany
[9] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
[10] Univ York, Dept Phys, Heslington YO10 5DD, England
基金
瑞士国家科学基金会;
关键词
graphene nanoribbons; bottom-up synthesis; Scanning tunneling spectroscopy; Raman spectroscopy; on-surface chemistry; SCANNING TUNNELING MICROSCOPE; ATOMIC-FORCE MICROSCOPY; QUASI-PARTICLE; TRANSISTORS; POLYMERIZATION; SEMICONDUCTORS; STATE; EDGE;
D O I
10.1021/acsnano.6b06405
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bottom-up approach to synthesize graphene nanoribbons strives not only to introduce a band gap into the electronic structure of graphene but also to accurately tune its value by designing both the width and edge structure of the ribbons with atomic precision. We report the synthesis of an armchair graphene nanoribbon with a width of nine carbon atoms on Au(111) through surface-assisted aryl aryl coupling and subsequent cyclodehydrogenation of a properly chosen molecular precursor. By combining high-resolution atomic force microscopy, scanning tunneling microscopy, and Raman spectroscopy, we demonstrate that the atomic structure of the fabricated ribbons is exactly as designed. Angle-resolved photoemission spectroscopy and Fourier-transformed scanning tunneling spectroscopy reveal an electronic band gap of 1.4 eV and effective masses of approximate to 0.1 m(e) for both electrons and holes, constituting a substantial improvement over previous efforts toward the development of transistor applications. We use ab initio calculations to gain insight into the dependence of the Raman spectra on excitation wavelength as well as to rationalize the symmetry-dependent contribution of the ribbons' electronic states to the tunneling current. We propose a simple rule for the visibility of frontier electronic bands of armchair graphene nanoribbons in scanning tunneling spectroscopy.
引用
收藏
页码:1380 / 1388
页数:9
相关论文
共 50 条
[1]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[2]   Molecules-Oligomers-Nanowires-Graphene Nanoribbons: A Bottom-Up Stepwise On-Surface Covalent Synthesis Preserving Long-Range Order [J].
Basagni, Andrea ;
Sedona, Francesco ;
Pignedoli, Carlo A. ;
Cattelan, Mattia ;
Nicolas, Louis ;
Casarin, Maurizio ;
Sambi, Mauro .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) :1802-1808
[3]   Bottom-up graphene nanoribbon field-effect transistors [J].
Bennett, Patrick B. ;
Pedramrazi, Zahra ;
Madani, Ali ;
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. ;
Bokor, Jeffrey .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors [J].
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Pedramrazi, Zahra ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. .
ACS NANO, 2013, 7 (07) :6123-6128
[6]   High-frequency self-aligned graphene transistors with transferred gate stacks [J].
Cheng, Rui ;
Bai, Jingwei ;
Liao, Lei ;
Zhou, Hailong ;
Chen, Yu ;
Liu, Lixin ;
Lin, Yung-Chen ;
Jiang, Shan ;
Huang, Yu ;
Duan, Xiangfeng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) :11588-11592
[7]   Exciton-dominated optical response of ultra-narrow graphene nanoribbons [J].
Denk, Richard ;
Hohage, Michael ;
Zeppenfeld, Peter ;
Cai, Jinming ;
Pignedoli, Carlo A. ;
Soede, Hajo ;
Fasel, Roman ;
Feng, Xinliang ;
Muellen, Klaus ;
Wang, Shudong ;
Prezzi, Deborah ;
Ferretti, Andrea ;
Ruini, Alice ;
Molinari, Elisa ;
Ruffieux, Pascal .
NATURE COMMUNICATIONS, 2014, 5
[8]   Coulomb-hole summations and energies for GW calculations with limited number of empty orbitals: A modified static remainder approach [J].
Deslippe, Jack ;
Samsonidze, Georgy ;
Jain, Manish ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW B, 2013, 87 (16)
[9]   BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures [J].
Deslippe, Jack ;
Samsonidze, Georgy ;
Strubbe, David A. ;
Jain, Manish ;
Cohen, Marvin L. ;
Louie, Steven G. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (06) :1269-1289
[10]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923