On the classification of non-equal rank affine conformal embeddings and applications

被引:7
作者
Adamovic, Drazen [1 ]
Kac, Victor G. [2 ]
Frajria, Pierluigi Moseneder [3 ]
Papi, Paolo [4 ]
Perse, Ozren [1 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
[2] MIT, Dept Math, 77 Mass Ave, Cambridge, MA 02139 USA
[3] Politecn Milan, Polo Reg Como, Via Valleggio 11, I-22100 Como, Italy
[4] Sapienza Univ Roma, Dipartimento Matemat, Ple A Moro 2, I-00185 Rome, Italy
来源
SELECTA MATHEMATICA-NEW SERIES | 2018年 / 24卷 / 03期
基金
美国国家科学基金会;
关键词
Conformal embedding; Vertex operator algebra; Non-equal rank subalgebra; Howe dual pairs; q-series identity; VERTEX ALGEBRAS; SYMMETRIC-SPACES; LIE-ALGEBRAS; SUBALGEBRAS; REPRESENTATIONS; DECOMPOSITIONS; OPERATOR; TENSOR; PAIRS;
D O I
10.1007/s00029-017-0386-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We complete the classification of conformal embeddings of a maximally reductive subalgebra (sic) into a simple Lie algebra g at non-integrable non-critical levels k by dealing with the case when (sic) has rank less than that of g. We describe some remarkable instances of decomposition of the vertex algebra V-k (g) as a module for the vertex subalgebra generated by (sic). We discuss decompositions of conformal embeddings and constructions of new affine Howe dual pairs at negative levels. In particular, we study an example of conformal embeddings A(1) x A(1) hooked right arrow C-3 at level k = -1/2, and obtain explicit branching rules by applying certain q-series identity. In the analysis of conformal embedding A(1) x D-4 hooked right arrow C-8 at level k = -1/2 we detect subsingular vectors which do not appear in the branching rules of the classical Howe dual pairs.
引用
收藏
页码:2455 / 2498
页数:44
相关论文
共 37 条
[1]  
Adamovic D., APPL COLLAPSIN UNPUB
[2]   Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moeseneder ;
Papi, Paolo ;
Perse, Ozren .
JOURNAL OF ALGEBRA, 2018, 500 :117-152
[3]   Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
JAPANESE JOURNAL OF MATHEMATICS, 2017, 12 (02) :261-315
[4]   Finite vs. Infinite Decompositions in Conformal Embeddings [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (02) :445-473
[5]   FUSION RULES AND COMPLETE REDUCIBILITY OF CERTAIN MODULES FOR AFFINE LIE ALGEBRAS [J].
Adamovic, Drazen ;
Perse, Ozren .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (01)
[6]   Some General Results on Conformal Embeddings of Affine Vertex Operator Algebras [J].
Adamovic, Drazen ;
Perse, Ozren .
ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (01) :51-64
[7]   The Vertex Algebra M(1)+ and Certain Affine Vertex Algebras of Level-1 [J].
Adamovic, Drazen ;
Perse, Ozren .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[8]  
Andreev E. M., 1967, FUNKT ANAL PRIL, V1, P3
[9]  
[Anonymous], J I MATH JUSSIEU
[10]  
[Anonymous], 1952, Trudy Moskovskogo Matematicheskogo Obshchestva