Rapid mold-free manufacturing of microfluidic devices with robust and spatially directed surface modifications

被引:23
作者
Pardon, Gaspard [1 ]
Saharil, Farizah [1 ]
Karlsson, J. Mikael [1 ]
Supekar, Omkar [2 ]
Carlborg, Carl Fredrik [1 ]
van der Wijngaart, Wouter [1 ]
Haraldsson, Tommy [1 ]
机构
[1] KTH Royal Inst Technol, S-10044 Stockholm, Sweden
[2] Indian Inst Technol, Bombay 400076, Maharashtra, India
关键词
Lab on chip; Microfluidics; Photolithography; OSTE polymer; Surface modification; SU-8; POLYMERIZATION; FABRICATION; CHIP;
D O I
10.1007/s10404-014-1351-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new and easy-to-use method that allows for mold-free and rapid prototyping of microfluidic devices, comprising channels, access holes, and surface-modified patterns, is presented. The innovative method is based on direct photolithographic patterning of an off-stoichiometry thiol-ene (OSTE) polymer formulation, tailor-made for photolithography, which offers unprecedented spatial resolution and allows for efficient, robust and reliable, room temperature surface modification and glue-free, covalent room temperature bonding. This mold-free process does not require clean room equipment and therefore allows for rapid, i.e., less than one hour, design-fabricate-test cycles, using a material suited for larger-scale production. The excellent photolithographic properties of this new OSTE formulation allow patterning with unprecedented, for thiol-ene polymer systems, resolution in hundreds of micrometers thick layers, 200 mu m thick in this work. Moreover, we demonstrated robust, covalent and spatially controlled modification of the microchannel surfaces with an initial contact angle of 76A degrees by patterning hydrophobic/hydrophilic areas with contact angles of 102A degrees and 43A degrees, respectively.
引用
收藏
页码:773 / 779
页数:7
相关论文
共 32 条
  • [1] Bartholomeusz DA, 2005, J MICROELECTROMECH S, V14, P1364, DOI 10.1109/JMEMS.2005.859087
  • [2] Polymer microfabrication technologies for microfluidic systems
    Becker, Holger
    Gaertner, Claudia
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 390 (01) : 89 - 111
  • [3] Surface modification in microchip electrophoresis
    Belder, D
    Ludwig, M
    [J]. ELECTROPHORESIS, 2003, 24 (21) : 3595 - 3606
  • [4] Multi-layer SU-8 lift-off technology for microfluidic devices
    Bohl, B
    Steger, R
    Zengerle, R
    Koltay, P
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (06) : 1125 - 1130
  • [5] Toward an Enhanced Understanding and Implementation of Photopolymerization Reactions
    Bowman, Christopher N.
    Kloxin, Christopher J.
    [J]. AICHE JOURNAL, 2008, 54 (11) : 2775 - 2795
  • [6] Carlborg C. F., 2012, 16 INT C MIN SYST CH, P677
  • [7] Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices
    Carlborg, Carl Fredrik
    Haraldsson, Tommy
    Oberg, Kim
    Malkoch, Michael
    van der Wijngaart, Wouter
    [J]. LAB ON A CHIP, 2011, 11 (18) : 3136 - 3147
  • [8] Commercialization of microfluidic point-of-care diagnostic devices
    Chin, Curtis D.
    Linder, Vincent
    Sia, Samuel K.
    [J]. LAB ON A CHIP, 2012, 12 (12) : 2118 - 2134
  • [9] Surface modification of thermoplastics - towards the plastic biochip for high throughput screening devices
    Diaz-Quijada, Gerardo A.
    Peytavi, Regis
    Nantel, Andre
    Roy, Emmanuel
    Bergeron, Michel G.
    Dumoulin, Michel M.
    Veres, Teodor
    [J]. LAB ON A CHIP, 2007, 7 (07) : 856 - 862
  • [10] 3D polymeric microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP)
    Haraldsson, KT
    Hutchison, JB
    Sebra, RP
    Good, BT
    Anseth, KS
    Bowman, CN
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2006, 113 (01) : 454 - 460