R-Comm: A Traffic Based Approach for Joint Vehicular Radar-Communication

被引:22
作者
Singh, Rohit [1 ]
Saluja, Deepak [1 ]
Kumar, Suman [1 ]
机构
[1] Indian Inst Technol Ropar, Dept Elect Engn, Ropar 140001, Punjab, India
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2022年 / 7卷 / 01期
关键词
Radar; Interference; Radar antennas; Doppler radar; Time-frequency analysis; OFDM; Chirp; Connected vehicles; dedicated short range communication; vehicular communication; automotive radar; VEHICLES; INTERFERENCE; NETWORKS; IMPACT;
D O I
10.1109/TIV.2021.3074389
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automotive radar and vehicular communication are the two primary means of establishing an intelligent transportation system. However, both the systems are susceptible to interference. The inter-vehicular interference significantly affects the radar and communication performance, especially in the dense traffic scenarios. In this work, we have shown that lowering down radar range in dense traffic scenario provides twofold advantages; (a) it reduces radar-to-radar interference and, (b) it provides resources to support the vehicular communication. We propose a joint Radar-Communication (R-Comm) algorithm which enables connected vehicles to use a fraction of radar resources for vehicular communication based on the traffic density. Also, two different schemes have been proposed for R-Comm transmission in the sparse and dense traffic scenarios. Further, through simulation results, it is shown that R-Comm benefits both radar and communication systems.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 33 条
  • [1] RadChat: Spectrum Sharing for Automotive Radar Interference Mitigation
    Aydogdu, Canan
    Keskin, Musa Furkan
    Garcia, Nil
    Wymeersch, Henk
    Bliss, Daniel W.
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (01) : 416 - 429
  • [2] Radar Interference Mitigation for Automated Driving: Exploring Proactive Strategies
    Aydogdu, Canan
    Keskin, Musa Furkan
    Carvajal, Gisela K.
    Eriksson, Olof
    Hellsten, Hans
    Herbertsson, Hans
    Nilsson, Emil
    Rydstrom, Mats
    Vanas, Karl
    Wymeersch, Henk
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (04) : 72 - 84
  • [3] Mutual interference of millimeter-wave radar systems
    Brooker, Graham M.
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2007, 49 (01) : 170 - 181
  • [4] Modeling Broadcasting in IEEE 802.11p/WAVE Vehicular Networks
    Campolo, Claudia
    Vinel, Alexey
    Molinaro, Antonella
    Koucheryavy, Yevgeni
    [J]. IEEE COMMUNICATIONS LETTERS, 2011, 15 (02) : 199 - 201
  • [5] Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing
    Choi, Junil
    Va, Vutha
    Gonzalez-Prelcic, Nuria
    Daniels, Robert
    Bhat, Chandra R.
    Heath, Robert W., Jr.
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2016, 54 (12) : 160 - 167
  • [6] Sub-6GHz Assisted MAC for Millimeter Wave Vehicular Communications
    Coll-Perales, Baldomero
    Gozalvez, Javier
    Gruteser, Marco
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (03) : 125 - 131
  • [7] Dokhanchi SH, 2018, IEEE RAD CONF, P902, DOI 10.1109/RADAR.2018.8378680
  • [8] Garcia N., 2019, IEEE RAD CONF, P1, DOI 10.1109/RADAR.2019.8835744
  • [9] High-Performance Automotive Radar A review of signal processing algorithms and modulation schemes
    Hakobyan, Gor
    Yang, Bin
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (05) : 32 - 44
  • [10] Vehicular Multi-Access Edge Computing With Licensed Sub-6 GHz, IEEE 802.11p and mmWave
    Hu, Qitu
    Wu, Celimuge
    Zhao, Xiaobing
    Chen, Xianfu
    Ji, Yusheng
    Yoshinaga, Tsutomu
    [J]. IEEE ACCESS, 2018, 6 : 1995 - 2004