Thermal transport properties of defective graphene: A molecular dynamics investigation

被引:5
作者
Yang Yu-Lin [1 ]
Lu Yu [2 ,3 ]
机构
[1] Xiamen Univ Technol, Sch Optoelect & Commun Engn, Xiamen 361024, Peoples R China
[2] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350007, Peoples R China
[3] Concord Univ Coll, Dept Informat Technol, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal conductivity; vacancy defect; graphene; molecular dynamics simulation; MECHANICAL-PROPERTIES; CONDUCTIVITY;
D O I
10.1088/1674-1056/23/10/106501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal conductivity of the graphene nanoribbons decreases as the defect coverage increases and is saturated in a high defect ratio range. Further analysis reveals a strong mismatch in the phonon spectrum between the unsaturated carbon atoms in 2-fold coordination around the defects and the saturated carbon atoms in 3-fold coordination, which induces high interfacial thermal resistance in defective graphene and suppresses the thermal conductivity. The defects induce a complicated bonding transform from sp(2) to hybrid sp-sp(2) network and trigger vibration mode density redistribution, by which the phonon spectrum conversion and strong phonon scattering at defect sites are explained. These results shed new light on the understanding of the thermal transport behavior of graphene-based nanomaterials with new structural configurations and pave the way for future designs of thermal management phononic devices.
引用
收藏
页数:6
相关论文
共 33 条
  • [1] Thermal rectification in nanosized model systems: A molecular dynamics approach
    Alaghemandi, Mohammad
    Leroy, Frederic
    Mueller-Plathe, Florian
    Boehm, Michael C.
    [J]. PHYSICAL REVIEW B, 2010, 81 (12)
  • [2] Thermal transport across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations
    Bagri, Akbar
    Kim, Sang-Pil
    Ruoff, Rodney S.
    Shenoy, Vivek B.
    [J]. NANO LETTERS, 2011, 11 (09) : 3917 - 3921
  • [3] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [4] A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
    Brenner, DW
    Shenderova, OA
    Harrison, JA
    Stuart, SJ
    Ni, B
    Sinnott, SB
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) : 783 - 802
  • [5] Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
    Cai, Weiwei
    Moore, Arden L.
    Zhu, Yanwu
    Li, Xuesong
    Chen, Shanshan
    Shi, Li
    Ruoff, Rodney S.
    [J]. NANO LETTERS, 2010, 10 (05) : 1645 - 1651
  • [6] Thermal Conductivity of Graphene in Corbino Membrane Geometry
    Faugeras, Clement
    Faugeras, Blaise
    Orlita, Milan
    Potemski, M.
    Nair, Rahul R.
    Geim, A. K.
    [J]. ACS NANO, 2010, 4 (04) : 1889 - 1892
  • [7] Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
    Ghosh, S.
    Calizo, I.
    Teweldebrhan, D.
    Pokatilov, E. P.
    Nika, D. L.
    Balandin, A. A.
    Bao, W.
    Miao, F.
    Lau, C. N.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (15)
  • [8] Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]
  • [9] Mechanical and thermal transport properties of graphene with defects
    Hao, Feng
    Fang, Daining
    Xu, Zhiping
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (04)
  • [10] CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS
    HOOVER, WG
    [J]. PHYSICAL REVIEW A, 1985, 31 (03): : 1695 - 1697