Uncertainty quantification for a sailing yacht hull, using multi-fidelity kriging

被引:48
作者
de Baar, Jouke [1 ]
Roberts, Stephen [1 ]
Dwight, Richard [2 ]
Mallol, Benoit [3 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
[2] Delft Univ Technol, NL-2600 AA Delft, Netherlands
[3] Numeca, Brussels, Belgium
关键词
Uncertainty quantification; Multi-fidelity; Kriging; RANS; Free-surface; OPTIMIZATION; DESIGN; MODELS; CFD;
D O I
10.1016/j.compfluid.2015.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Uncertainty quantification (UQ) for CFD-based ship design can require a large number of simulations, resulting in significant overall computational cost. Presently, we use an existing method, multi-fidelity Kriging, to reduce the number of simulations required for the UQ analysis of the performance of a sailing yacht hull, considering uncertainties in the tank blockage, mass and centre of gravity. We compare the UQ results with experimental values. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 50 条
[31]   Multi-fidelity information fusion based on prediction of kriging [J].
Huachao Dong ;
Baowei Song ;
Peng Wang ;
Shuai Huang .
Structural and Multidisciplinary Optimization, 2015, 51 :1267-1280
[32]   Multi-fidelity uncertainty quantification of film cooling flow under random operational and geometrical conditions [J].
Mohammadi-Ahmar, Akbar ;
Raisee, Mehrdad .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 152
[33]   Multi-Fidelity Adaptive Sampling for Surrogate-Based Optimization and Uncertainty Quantification [J].
Garbo, Andrea ;
Parekh, Jigar ;
Rischmann, Tilo ;
Bekemeyer, Philipp .
AEROSPACE, 2024, 11 (06)
[34]   Multi-fidelity uncertainty quantification method with application to nonlinear structural response analysis [J].
Yang, Qiang ;
Meng, Songhe ;
Jin, Hua ;
Xie, Weihua ;
Zhang, Xinghong .
APPLIED MATHEMATICAL MODELLING, 2019, 75 :853-864
[35]   A hierarchical kriging approach for multi-fidelity optimization of automotive crashworthiness problems [J].
Kaps, Arne ;
Czech, Catharina ;
Duddeck, Fabian .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (04)
[36]   A (co-)kriging multi-fidelity framework for wind loading predictions [J].
Ciarlatani, Mattia Fabrizio ;
Gorle, Catherine .
JOURNAL OF BUILDING ENGINEERING, 2025, 110
[37]   A Machine Learning Based Hybrid Multi-Fidelity Multi-Level Monte Carlo Method for Uncertainty Quantification [J].
Khan, Nagoor Kani Jabarullah ;
Elsheikh, Ahmed H. .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2019, 7
[38]   Multi-fidelity Bayesian Optimization of SWATH Hull Forms [J].
Bonfiglio, Luca ;
Perdikaris, Paris ;
Brizzolara, Stefano .
JOURNAL OF SHIP RESEARCH, 2020, 64 (02) :154-170
[39]   Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling [J].
Wang, Fenggang ;
Xiong, Fenfen ;
Chen, Shishi ;
Song, Jianmei .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (04) :1583-1604
[40]   Context-aware learning of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification [J].
Farcas, Ionut-Gabriel ;
Peherstorfer, Benjamin ;
Neckel, Tobias ;
Jenko, Frank ;
Bungartz, Hans-Joachim .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 406