Uncertainty quantification for a sailing yacht hull, using multi-fidelity kriging

被引:44
|
作者
de Baar, Jouke [1 ]
Roberts, Stephen [1 ]
Dwight, Richard [2 ]
Mallol, Benoit [3 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
[2] Delft Univ Technol, NL-2600 AA Delft, Netherlands
[3] Numeca, Brussels, Belgium
关键词
Uncertainty quantification; Multi-fidelity; Kriging; RANS; Free-surface; OPTIMIZATION; DESIGN; MODELS; CFD;
D O I
10.1016/j.compfluid.2015.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Uncertainty quantification (UQ) for CFD-based ship design can require a large number of simulations, resulting in significant overall computational cost. Presently, we use an existing method, multi-fidelity Kriging, to reduce the number of simulations required for the UQ analysis of the performance of a sailing yacht hull, considering uncertainties in the tank blockage, mass and centre of gravity. We compare the UQ results with experimental values. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 50 条
  • [11] Multi-fidelity analysis and uncertainty quantification of beam vibration using correction response surfaces
    Iyappan, Praveen
    Ganguli, Ranjan
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2020, 21 (01): : 26 - 42
  • [12] Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification
    Reeve, Samuel Temple
    Strachan, Alejandro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 334 : 207 - 220
  • [13] MULTI-FIDELITY MODEL FUSION AND UNCERTAINTY QUANTIFICATION USING HIGH DIMENSIONAL MODEL REPRESENTATION
    Kubicek, Martin
    Mehta, Piyush M.
    Minisci, Edmondo
    Vasile, Massimiliano
    SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 1987 - 2002
  • [14] A MULTI-FIDELITY NEURAL NETWORK SURROGATE SAMPLING METHOD FOR UNCERTAINTY QUANTIFICATION
    Motamed, Mohammad
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (04) : 315 - 332
  • [15] Aleatory uncertainty quantification based on multi-fidelity deep neural networks
    Li, Zhihui
    Montomoli, Francesco
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 245
  • [16] Multi-fidelity uncertainty quantification of particle deposition in turbulent pipe flow
    Yao, Yuan
    Huan, Xun
    Capecelatro, Jesse
    Journal of Aerosol Science, 2022, 166
  • [17] Multi-fidelity neural network for uncertainty quantification of chemical reaction models
    Liu, Chengcheng
    Lin, Keli
    Wang, Yiru
    Yang, Bin
    COMBUSTION AND FLAME, 2023, 258
  • [18] Multi-fidelity nonlinear unsteady aerodynamic modeling and uncertainty estimation based on Hierarchical Kriging
    Peng, Xuhao
    Kou, Jiaqing
    Zhang, Weiwei
    APPLIED MATHEMATICAL MODELLING, 2023, 122 : 1 - 21
  • [19] Multi-fidelity orbit uncertainty propagation
    Jones, Brandon A.
    Weisman, Ryan
    ACTA ASTRONAUTICA, 2019, 155 : 406 - 417
  • [20] Multi-fidelity information fusion based on prediction of kriging
    Huachao Dong
    Baowei Song
    Peng Wang
    Shuai Huang
    Structural and Multidisciplinary Optimization, 2015, 51 : 1267 - 1280