Uncertainty quantification for a sailing yacht hull, using multi-fidelity kriging

被引:44
|
作者
de Baar, Jouke [1 ]
Roberts, Stephen [1 ]
Dwight, Richard [2 ]
Mallol, Benoit [3 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
[2] Delft Univ Technol, NL-2600 AA Delft, Netherlands
[3] Numeca, Brussels, Belgium
关键词
Uncertainty quantification; Multi-fidelity; Kriging; RANS; Free-surface; OPTIMIZATION; DESIGN; MODELS; CFD;
D O I
10.1016/j.compfluid.2015.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Uncertainty quantification (UQ) for CFD-based ship design can require a large number of simulations, resulting in significant overall computational cost. Presently, we use an existing method, multi-fidelity Kriging, to reduce the number of simulations required for the UQ analysis of the performance of a sailing yacht hull, considering uncertainties in the tank blockage, mass and centre of gravity. We compare the UQ results with experimental values. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 50 条
  • [1] Multi-Fidelity Surrogate-Based Parameter Estimation for a Sailing Yacht Hull
    de Baar, Jouke H. S.
    Roberts, Stephen G.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 105 - 111
  • [2] Multi-fidelity analysis and uncertainty quantification of beam vibration using co-kriging interpolation method
    Krishnan, K. V. Vishal
    Ganguli, Ranjan
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 398
  • [3] MULTI-FIDELITY MACHINE LEARNING FOR UNCERTAINTY QUANTIFICATION AND OPTIMIZATION
    Zhang, Ruda
    Alemazkoor, Negin
    JOURNAL OF MACHINE LEARNING FOR MODELING AND COMPUTING, 2024, 5 (04): : 77 - 94
  • [4] ROBUST DESIGN OPTIMIZATION OF A COMPRESSOR ROTOR USING RECURSIVE COKRIGING BASED MULTI-FIDELITY UNCERTAINTY QUANTIFICATION AND MULTI-FIDELITY OPTIMIZATION
    Wiegand, Marcus
    Prots, Andriy
    Meyer, Marcus
    Schmidt, Robin
    Voigt, Matthias
    Mailach, Ronald
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 12D, 2024,
  • [5] Co-kriging based multi-fidelity uncertainty quantification of beam vibration using coarse and fine finite element meshes
    Rohit, R. Julian
    Ganguli, Ranjan
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2021, 23 (02): : 147 - 168
  • [6] Multi-fidelity Co-Kriging surrogate model for ship hull form optimization
    Liu, Xinwang
    Zhao, Weiwen
    Wan, Decheng
    OCEAN ENGINEERING, 2022, 243
  • [7] Enhanced multi-fidelity modeling for digital twin and uncertainty quantification
    Desai, Aarya Sheetal
    Navaneeth, N.
    Adhikari, Sondipon
    Chakraborty, Souvik
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 74
  • [8] Multi-fidelity uncertainty quantification of particle deposition in turbulent flow
    Yao, Yuan
    Huan, Xun
    Capecelatro, Jesse
    JOURNAL OF AEROSOL SCIENCE, 2022, 166
  • [9] Kriging-based multi-fidelity optimization via information fusion with uncertainty
    Li, Chengshan
    Wang, Peng
    Dong, Huachao
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2018, 32 (01) : 245 - 259
  • [10] Kriging-based multi-fidelity optimization via information fusion with uncertainty
    Chengshan Li
    Peng Wang
    Huachao Dong
    Journal of Mechanical Science and Technology, 2018, 32 : 245 - 259