An algorithm for approximate multiparametric convex programming

被引:80
作者
Bemporad, Alberto [1 ]
Filippi, Carlo
机构
[1] Univ Siena, Dip Ingn Informaz, I-53100 Siena, Italy
[2] Univ Padua, Dip Matemat Pura & Applicata, I-35100 Padua, Italy
关键词
multiparametric programming; convex programming; sensitivity analysis;
D O I
10.1007/s10589-006-6447-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For multiparametric convex nonlinear programming problems we propose a recursive algorithm for approximating, within a given suboptimality tolerance, the value function and an optimizer as functions of the parameters. The approximate solution is expressed as a piecewise affine function over a simplicial partition of a subset of the feasible parameters, and it is organized over a tree structure for efficiency of evaluation. Adaptations of the algorithm to deal with multiparametric semidefinite programming and multiparametric geometric programming are provided and exemplified. The approach is relevant for real-time implementation of several optimization-based feedback control strategies.
引用
收藏
页码:87 / 108
页数:22
相关论文
共 32 条