Decomposition of degenerate Gromov-Witten invariants

被引:35
作者
Abramovich, Dan [1 ]
Chen, Qile [2 ]
Gross, Mark [3 ]
Siebert, Bernd [4 ]
机构
[1] Brown Univ, Dept Math, Box 1917, Providence, RI 02912 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[3] Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[4] Univ Texas Austin, Dept Math, 2515 Speedway, Austin, TX 78712 USA
基金
英国工程与自然科学研究理事会;
关键词
logarithmic Gromov-Witten invariant; moduli stack; logarithmic stable map; degeneration; decomposition; tropical curve; tropical map; rigid tropical curve; Artin fan; STABLE LOGARITHMIC MAPS; HOLOMORPHIC-CURVES; GEOMETRY; MODULI; TROPICALIZATION; STACKS; SPACE;
D O I
10.1112/S0010437X20007393
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a decomposition formula of logarithmic Gromov-Witten invariants in a degeneration setting. A one-parameter log smooth family X -> B with singular fibre over b(0) is an element of B yields a family M(X/B, beta). B of moduli stacks of stable logarithmic maps. We give a virtual decomposition of the fibre of this family over b(0) in terms of rigid tropical maps to the tropicalization of X/B. This generalizes one aspect of known results in the case that the fibre Xb(0) is a normal crossings union of two divisors. We exhibit our formulas in explicit examples.
引用
收藏
页码:2020 / 2075
页数:56
相关论文
共 45 条
  • [1] Weak semistable reduction in characteristic 0
    Abramovich, D
    Karu, K
    [J]. INVENTIONES MATHEMATICAE, 2000, 139 (02) : 241 - 273
  • [2] Abramovich D., 2020, J EUR MATH SOC JEMS
  • [3] Birational invariance in logarithmic Gromov-Witten theory
    Abramovich, Dan
    Wise, Jonathan
    [J]. COMPOSITIO MATHEMATICA, 2018, 154 (03) : 595 - 620
  • [4] Boundedness of the space of stable logarithmic maps
    Abramovich, Dan
    Chen, Qile
    Marcus, Steffen
    Wise, Jonathan
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (09) : 2783 - 2809
  • [5] Abramovich D, 2015, ANN SCI ECOLE NORM S, V48, P765
  • [6] STABLE LOGARITHMIC MAPS TO DELIGNE-FALTINGS PAIRS II
    Abramovich, Dan
    Chen, Qile
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (03) : 465 - 488
  • [7] Arbarello E, 2011, GRUNDLEHR MATH WISS, V268, P1, DOI 10.1007/978-3-540-69392-5_1
  • [8] The intrinsic normal cone
    Behrend, K
    Fantechi, B
    [J]. INVENTIONES MATHEMATICAE, 1997, 128 (01) : 45 - 88
  • [9] Gromov-Witten invariants in algebraic geometry
    Behrend, K
    [J]. INVENTIONES MATHEMATICAE, 1997, 127 (03) : 601 - 617
  • [10] Stacks of stable maps and Gromov-Witten invariants
    Behrend, K
    Manin, Y
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) : 1 - 60