Raman-strain relations in highly strained Ge: Uniaxial ⟨100⟩, ⟨110⟩ and biaxial (001) stress

被引:44
作者
Gassenq, A. [1 ]
Tardif, S. [1 ]
Guilloy, K. [1 ]
Duchemin, I. [1 ]
Pauc, N. [1 ]
Hartmann, J. M. [2 ]
Rouchon, D. [2 ]
Widiez, J. [2 ]
Niquet, Y. M. [1 ]
Milord, L. [2 ]
Zabel, T. [3 ]
Sigg, H. [3 ]
Faist, J. [4 ]
Chelnokov, A. [2 ]
Rieutord, F. [1 ]
Reboud, V. [2 ]
Calvo, V. [1 ]
机构
[1] Univ Grenoble Alpes, CEA INAC, 17 Rue Martyrs, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA LETI, Minatec Campus,17 Rue Martyrs, F-38054 Grenoble, France
[3] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland
[4] ETH, Inst Quantum Elect, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
GERMANIUM NANOWIRES; TENSILE STRAIN; SI1-XGEX ALLOYS; LIGHT-EMISSION; SILICON; SI; SPECTROSCOPY; MICRODIFFRACTION; MICROSTRUCTURES; FREQUENCIES;
D O I
10.1063/1.4974202
中图分类号
O59 [应用物理学];
学科分类号
摘要
The application of high values of strain to Ge considerably improves its light emission properties and can even turn it into a direct band gap semiconductor. Raman spectroscopy is routinely used for strain measurements. Typical Raman-strain relationships that are used for Ge were defined up to similar to 1% strain using phonon deformation potential theory. In this work, we have studied this relationship at higher strain levels by calculating and measuring the Raman spectral shift-strain relations in several different strain configurations. Since differences were shown between the usual phonon deformation potential theory and ab-initio calculations, we highlight the need for experimental calibrations. We have then measured the strain in highly strained Ge micro-bridges and micro-crosses using Raman spectroscopy performed in tandem with synchrotron based microdiffraction. High values of strain are reported, which enable the calibration of the Raman-strain relations up to 1.8% of in plane strain for the (001) biaxial stress, 4.8% strain along < 100 >, and 3.8% strain along < 110 >. For Ge micro-bridges, oriented along < 100 >, the nonlinearity of the Raman shift-strain relation is confirmed. For the < 110 > orientation, we have shown that an unexpected non-linearity in the Raman-strain relationship has also to be taken into account for high stress induction. This work demonstrates an unprecedented level of strain measurement for the < 110 > uniaxial stress and gives a better understanding of the Raman-strain relations in Ge. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 61 条
[1]   Optimum strain configurations for carrier injection in near infrared Ge lasers [J].
Aldaghri, O. ;
Ikonic, Z. ;
Kelsall, R. W. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (05)
[2]   EFFECT OF STATIC UNIAXIAL-STRESS ON THE RAMAN-SPECTRUM OF SILICON (REPRINTED FROM SOLID-STATE COMMUN, VOL 8, PG 133-138, 1970) [J].
ANASTASSAKIS, E ;
PINCZUK, A ;
BURSTEIN, E ;
POLLAK, FH ;
CARDONA, M .
SOLID STATE COMMUNICATIONS, 1993, 88 (11-12) :1053-1058
[3]   Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metalorganic chemical vapor deposition [J].
Bai, Yu ;
Lee, Kenneth E. ;
Cheng, Chengwei ;
Lee, Minjoo L. ;
Fitzgerald, Eugene A. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (08)
[4]   Local uniaxial tensile strain in germanium of up to 4% induced by SiGe epitaxial nanostructures [J].
Bollani, Monica ;
Chrastina, Daniel ;
Gagliano, Luca ;
Rossetto, Lidia ;
Scopece, Daniele ;
Barget, Michael ;
Mondiali, Valeria ;
Frigerio, Jacopo ;
Lodari, Mario ;
Pezzoli, Fabio ;
Montalenti, Francesco ;
Bonera, Emiliano .
APPLIED PHYSICS LETTERS, 2015, 107 (08)
[5]   Tensilely Strained Germanium Nanomembranes as Infrared Optical Gain Media [J].
Boztug, C. ;
Sanchez-Perez, J. R. ;
Sudradjat, F. F. ;
Jacobson, R. B. ;
Paskiewicz, D. M. ;
Lagally, M. G. ;
Paiella, R. .
SMALL, 2013, 9 (04) :622-630
[6]   Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metaloxide-semiconductor process [J].
Capellini, G. ;
Reich, C. ;
Guha, S. ;
Yamamoto, Y. ;
Lisker, M. ;
Virgilio, M. ;
Ghrib, A. ;
El Kurdi, M. ;
Boucaud, P. ;
Tillack, B. ;
Schroeder, T. .
OPTICS EXPRESS, 2014, 22 (01) :399-410
[7]   Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach [J].
Capellini, G. ;
Kozlowski, G. ;
Yamamoto, Y. ;
Lisker, M. ;
Wenger, C. ;
Niu, G. ;
Zaumseil, P. ;
Tillack, B. ;
Ghrib, A. ;
de Kersauson, M. ;
El Kurdi, M. ;
Boucaud, P. ;
Schroeder, T. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (01)
[8]   Direct-Gap Gain and Optical Absorption in Germanium Correlated to the Density of Photoexcited Carriers, Doping, and Strain [J].
Carroll, Lee ;
Friedli, Peter ;
Neuenschwander, Stefan ;
Sigg, Hans ;
Cecchi, Stefano ;
Isa, Fabio ;
Chrastina, Daniel ;
Isella, Giovanni ;
Fedoryshyn, Yuriy ;
Faist, Jerome .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[9]   STRESS-INDUCED SHIFTS OF FIRST-ORDER RAMAN FREQUENCIES OF DIAMOND AND ZINC-BLENDE-TYPE SEMICONDUCTORS [J].
CERDEIRA, F ;
BUCHENAUER, CJ ;
CARDONA, M ;
POLLAK, FH .
PHYSICAL REVIEW B-SOLID STATE, 1972, 5 (02) :580-+
[10]   Strain and lattice orientation distribution in SiN/Ge complementary metal-oxide-semiconductor compatible light emitting microstructures by quick x-ray nano-diffraction microscopy [J].
Chahine, G. A. ;
Zoellner, M. H. ;
Richard, M. -I. ;
Guha, S. ;
Reich, C. ;
Zaumseil, P. ;
Capellini, G. ;
Schroeder, T. ;
Schuelli, T. U. .
APPLIED PHYSICS LETTERS, 2015, 106 (07)